|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from peft import PeftModel |
|
import torch |
|
|
|
def load_model(): |
|
|
|
base_model = "defog/sqlcoder-7b-2" |
|
adapter_path = "./" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(adapter_path) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
base_model, |
|
device_map="auto", |
|
load_in_4bit=True, |
|
torch_dtype=torch.float16 |
|
) |
|
model.config.pad_token_id = tokenizer.pad_token_id |
|
|
|
|
|
model = PeftModel.from_pretrained(model, adapter_path) |
|
|
|
return model, tokenizer |
|
|
|
if __name__ == "__main__": |
|
model, tokenizer = load_model() |
|
prompt = "portfolio_transaction_headers(...) JOIN portfolio_transaction_details(...): Find transactions for portfolio 72 involving LTC" |
|
inputs = tokenizer(prompt, return_tensors="pt").to("cuda") |
|
outputs = model.generate(**inputs, max_new_tokens=128) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
|