Create model_loader.py
Browse files- model_loader.py +34 -0
model_loader.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model_loader.py
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
from peft import PeftModel
|
4 |
+
import torch
|
5 |
+
|
6 |
+
def load_model():
|
7 |
+
# Define o modelo base e o caminho dos adapters (reposit贸rio atual)
|
8 |
+
base_model = "defog/sqlcoder-7b-2"
|
9 |
+
adapter_path = "./" # Aqui, assume que os arquivos dos adapters est茫o no diret贸rio raiz do reposit贸rio
|
10 |
+
|
11 |
+
# Carregar o tokenizer
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(adapter_path)
|
13 |
+
tokenizer.pad_token = tokenizer.eos_token
|
14 |
+
|
15 |
+
# Carregar o modelo base com quantiza莽茫o (assumindo 4-bit e utiliza莽茫o de fp16)
|
16 |
+
model = AutoModelForCausalLM.from_pretrained(
|
17 |
+
base_model,
|
18 |
+
device_map="auto",
|
19 |
+
load_in_4bit=True,
|
20 |
+
torch_dtype=torch.float16
|
21 |
+
)
|
22 |
+
model.config.pad_token_id = tokenizer.pad_token_id
|
23 |
+
|
24 |
+
# Aplicar os adapters LoRA a partir do adapter_path
|
25 |
+
model = PeftModel.from_pretrained(model, adapter_path)
|
26 |
+
|
27 |
+
return model, tokenizer
|
28 |
+
|
29 |
+
if __name__ == "__main__":
|
30 |
+
model, tokenizer = load_model()
|
31 |
+
prompt = "portfolio_transaction_headers(...) JOIN portfolio_transaction_details(...): Find transactions for portfolio 72 involving LTC"
|
32 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
33 |
+
outputs = model.generate(**inputs, max_new_tokens=128)
|
34 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|