File size: 1,344 Bytes
5a17665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# model_loader.py
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import torch

def load_model():
    # Define o modelo base e o caminho dos adapters (reposit贸rio atual)
    base_model = "defog/sqlcoder-7b-2"
    adapter_path = "./"  # Aqui, assume que os arquivos dos adapters est茫o no diret贸rio raiz do reposit贸rio

    # Carregar o tokenizer
    tokenizer = AutoTokenizer.from_pretrained(adapter_path)
    tokenizer.pad_token = tokenizer.eos_token

    # Carregar o modelo base com quantiza莽茫o (assumindo 4-bit e utiliza莽茫o de fp16)
    model = AutoModelForCausalLM.from_pretrained(
        base_model,
        device_map="auto",
        load_in_4bit=True,
        torch_dtype=torch.float16
    )
    model.config.pad_token_id = tokenizer.pad_token_id

    # Aplicar os adapters LoRA a partir do adapter_path
    model = PeftModel.from_pretrained(model, adapter_path)
    
    return model, tokenizer

if __name__ == "__main__":
    model, tokenizer = load_model()
    prompt = "portfolio_transaction_headers(...) JOIN portfolio_transaction_details(...): Find transactions for portfolio 72 involving LTC"
    inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
    outputs = model.generate(**inputs, max_new_tokens=128)
    print(tokenizer.decode(outputs[0], skip_special_tokens=True))