Melo1512's picture
End of training
cab9489 verified
metadata
library_name: transformers
base_model: Melo1512/vit-msn-small-beta-fia-manually-enhanced-HSV_test_2
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-msn-small-beta-fia-manually-enhanced-HSV_test_3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8802816901408451

vit-msn-small-beta-fia-manually-enhanced-HSV_test_3

This model is a fine-tuned version of Melo1512/vit-msn-small-beta-fia-manually-enhanced-HSV_test_2 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5013
  • Accuracy: 0.8803

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.15
  • num_epochs: 50
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.5714 1 0.5123 0.8873
No log 1.7143 3 0.5219 0.8873
No log 2.8571 5 0.5431 0.8732
No log 4.0 7 0.5444 0.8732
No log 4.5714 8 0.5336 0.8803
0.4252 5.7143 10 0.5235 0.8873
0.4252 6.8571 12 0.5269 0.8803
0.4252 8.0 14 0.5106 0.8873
0.4252 8.5714 15 0.5048 0.8873
0.4252 9.7143 17 0.5013 0.8803
0.4252 10.8571 19 0.5105 0.8803
0.4413 12.0 21 0.5256 0.8803
0.4413 12.5714 22 0.5303 0.8732
0.4413 13.7143 24 0.5218 0.8662
0.4413 14.8571 26 0.5188 0.8592
0.4413 16.0 28 0.5202 0.8592
0.4413 16.5714 29 0.5252 0.8592
0.437 17.7143 31 0.5385 0.8592
0.437 18.8571 33 0.5456 0.8592
0.437 20.0 35 0.5409 0.8732
0.437 20.5714 36 0.5375 0.8662
0.437 21.7143 38 0.5356 0.8662
0.4343 22.8571 40 0.5328 0.8803
0.4343 24.0 42 0.5318 0.8803
0.4343 24.5714 43 0.5330 0.8803
0.4343 25.7143 45 0.5334 0.8803
0.4343 26.8571 47 0.5332 0.8732
0.4343 28.0 49 0.5341 0.8732
0.4271 28.5714 50 0.5343 0.8732

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1