File size: 3,797 Bytes
8a29e0c cab9489 8a29e0c cab9489 8a29e0c 69e5c63 8a29e0c a9dba70 9a0df9b 8a29e0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
---
library_name: transformers
base_model: Melo1512/vit-msn-small-beta-fia-manually-enhanced-HSV_test_2
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-msn-small-beta-fia-manually-enhanced-HSV_test_3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8802816901408451
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-msn-small-beta-fia-manually-enhanced-HSV_test_3
This model is a fine-tuned version of [Melo1512/vit-msn-small-beta-fia-manually-enhanced-HSV_test_2](https://huggingface.co/Melo1512/vit-msn-small-beta-fia-manually-enhanced-HSV_test_2) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5013
- Accuracy: 0.8803
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.15
- num_epochs: 50
- label_smoothing_factor: 0.1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| No log | 0.5714 | 1 | 0.5123 | 0.8873 |
| No log | 1.7143 | 3 | 0.5219 | 0.8873 |
| No log | 2.8571 | 5 | 0.5431 | 0.8732 |
| No log | 4.0 | 7 | 0.5444 | 0.8732 |
| No log | 4.5714 | 8 | 0.5336 | 0.8803 |
| 0.4252 | 5.7143 | 10 | 0.5235 | 0.8873 |
| 0.4252 | 6.8571 | 12 | 0.5269 | 0.8803 |
| 0.4252 | 8.0 | 14 | 0.5106 | 0.8873 |
| 0.4252 | 8.5714 | 15 | 0.5048 | 0.8873 |
| 0.4252 | 9.7143 | 17 | 0.5013 | 0.8803 |
| 0.4252 | 10.8571 | 19 | 0.5105 | 0.8803 |
| 0.4413 | 12.0 | 21 | 0.5256 | 0.8803 |
| 0.4413 | 12.5714 | 22 | 0.5303 | 0.8732 |
| 0.4413 | 13.7143 | 24 | 0.5218 | 0.8662 |
| 0.4413 | 14.8571 | 26 | 0.5188 | 0.8592 |
| 0.4413 | 16.0 | 28 | 0.5202 | 0.8592 |
| 0.4413 | 16.5714 | 29 | 0.5252 | 0.8592 |
| 0.437 | 17.7143 | 31 | 0.5385 | 0.8592 |
| 0.437 | 18.8571 | 33 | 0.5456 | 0.8592 |
| 0.437 | 20.0 | 35 | 0.5409 | 0.8732 |
| 0.437 | 20.5714 | 36 | 0.5375 | 0.8662 |
| 0.437 | 21.7143 | 38 | 0.5356 | 0.8662 |
| 0.4343 | 22.8571 | 40 | 0.5328 | 0.8803 |
| 0.4343 | 24.0 | 42 | 0.5318 | 0.8803 |
| 0.4343 | 24.5714 | 43 | 0.5330 | 0.8803 |
| 0.4343 | 25.7143 | 45 | 0.5334 | 0.8803 |
| 0.4343 | 26.8571 | 47 | 0.5332 | 0.8732 |
| 0.4343 | 28.0 | 49 | 0.5341 | 0.8732 |
| 0.4271 | 28.5714 | 50 | 0.5343 | 0.8732 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1
|