Melo1512's picture
Model save
69e5c63 verified
|
raw
history blame
3.8 kB
metadata
library_name: transformers
base_model: Melo1512/vit-msn-small-beta-fia-manually-enhanced-HSV_test_2
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-msn-small-beta-fia-manually-enhanced-HSV_test_3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8732394366197183

vit-msn-small-beta-fia-manually-enhanced-HSV_test_3

This model is a fine-tuned version of Melo1512/vit-msn-small-beta-fia-manually-enhanced-HSV_test_2 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5558
  • Accuracy: 0.8732

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.15
  • num_epochs: 50
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.5714 1 0.5123 0.8873
No log 1.7143 3 0.5495 0.8662
No log 2.8571 5 0.6080 0.8592
No log 4.0 7 0.5591 0.8732
No log 4.5714 8 0.5464 0.8732
0.4241 5.7143 10 0.5982 0.8451
0.4241 6.8571 12 0.6497 0.8169
0.4241 8.0 14 0.5928 0.8521
0.4241 8.5714 15 0.5711 0.8521
0.4241 9.7143 17 0.5468 0.8732
0.4241 10.8571 19 0.5483 0.8521
0.4152 12.0 21 0.5783 0.8451
0.4152 12.5714 22 0.5835 0.8451
0.4152 13.7143 24 0.5668 0.8451
0.4152 14.8571 26 0.5556 0.8451
0.4152 16.0 28 0.5564 0.8451
0.4152 16.5714 29 0.5591 0.8451
0.4367 17.7143 31 0.5619 0.8592
0.4367 18.8571 33 0.5809 0.8592
0.4367 20.0 35 0.5810 0.8662
0.4367 20.5714 36 0.5768 0.8662
0.4367 21.7143 38 0.5591 0.8732
0.4241 22.8571 40 0.5452 0.8732
0.4241 24.0 42 0.5387 0.8732
0.4241 24.5714 43 0.5398 0.8732
0.4241 25.7143 45 0.5458 0.8732
0.4241 26.8571 47 0.5509 0.8732
0.4241 28.0 49 0.5550 0.8732
0.4171 28.5714 50 0.5558 0.8732

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1