--- library_name: transformers base_model: Melo1512/vit-msn-small-beta-fia-manually-enhanced-HSV_test_2 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-msn-small-beta-fia-manually-enhanced-HSV_test_3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8732394366197183 --- # vit-msn-small-beta-fia-manually-enhanced-HSV_test_3 This model is a fine-tuned version of [Melo1512/vit-msn-small-beta-fia-manually-enhanced-HSV_test_2](https://huggingface.co/Melo1512/vit-msn-small-beta-fia-manually-enhanced-HSV_test_2) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5558 - Accuracy: 0.8732 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.15 - num_epochs: 50 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | No log | 0.5714 | 1 | 0.5123 | 0.8873 | | No log | 1.7143 | 3 | 0.5495 | 0.8662 | | No log | 2.8571 | 5 | 0.6080 | 0.8592 | | No log | 4.0 | 7 | 0.5591 | 0.8732 | | No log | 4.5714 | 8 | 0.5464 | 0.8732 | | 0.4241 | 5.7143 | 10 | 0.5982 | 0.8451 | | 0.4241 | 6.8571 | 12 | 0.6497 | 0.8169 | | 0.4241 | 8.0 | 14 | 0.5928 | 0.8521 | | 0.4241 | 8.5714 | 15 | 0.5711 | 0.8521 | | 0.4241 | 9.7143 | 17 | 0.5468 | 0.8732 | | 0.4241 | 10.8571 | 19 | 0.5483 | 0.8521 | | 0.4152 | 12.0 | 21 | 0.5783 | 0.8451 | | 0.4152 | 12.5714 | 22 | 0.5835 | 0.8451 | | 0.4152 | 13.7143 | 24 | 0.5668 | 0.8451 | | 0.4152 | 14.8571 | 26 | 0.5556 | 0.8451 | | 0.4152 | 16.0 | 28 | 0.5564 | 0.8451 | | 0.4152 | 16.5714 | 29 | 0.5591 | 0.8451 | | 0.4367 | 17.7143 | 31 | 0.5619 | 0.8592 | | 0.4367 | 18.8571 | 33 | 0.5809 | 0.8592 | | 0.4367 | 20.0 | 35 | 0.5810 | 0.8662 | | 0.4367 | 20.5714 | 36 | 0.5768 | 0.8662 | | 0.4367 | 21.7143 | 38 | 0.5591 | 0.8732 | | 0.4241 | 22.8571 | 40 | 0.5452 | 0.8732 | | 0.4241 | 24.0 | 42 | 0.5387 | 0.8732 | | 0.4241 | 24.5714 | 43 | 0.5398 | 0.8732 | | 0.4241 | 25.7143 | 45 | 0.5458 | 0.8732 | | 0.4241 | 26.8571 | 47 | 0.5509 | 0.8732 | | 0.4241 | 28.0 | 49 | 0.5550 | 0.8732 | | 0.4171 | 28.5714 | 50 | 0.5558 | 0.8732 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1