LabiraPJOK_1_100 / README.md
Labira's picture
Training in progress epoch 94
3e4092e
---
library_name: transformers
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: Labira/LabiraPJOK_1_100
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Labira/LabiraPJOK_1_100
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0026
- Validation Loss: 8.2710
- Epoch: 94
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 300, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.5573 | 6.1112 | 0 |
| 0.2525 | 4.7174 | 1 |
| 0.4330 | 4.9959 | 2 |
| 0.2496 | 5.5703 | 3 |
| 0.1868 | 5.9061 | 4 |
| 0.1491 | 6.0854 | 5 |
| 0.1951 | 6.3417 | 6 |
| 0.0492 | 6.4913 | 7 |
| 0.0296 | 6.5959 | 8 |
| 0.0352 | 6.7091 | 9 |
| 0.0530 | 6.7985 | 10 |
| 0.0265 | 6.9577 | 11 |
| 0.0239 | 7.1006 | 12 |
| 0.0221 | 7.2133 | 13 |
| 0.0171 | 7.3099 | 14 |
| 0.0154 | 7.4198 | 15 |
| 0.0089 | 7.5009 | 16 |
| 0.0268 | 7.4562 | 17 |
| 0.0150 | 7.4317 | 18 |
| 0.0153 | 7.4442 | 19 |
| 0.0076 | 7.4628 | 20 |
| 0.0137 | 7.5225 | 21 |
| 0.0186 | 7.5907 | 22 |
| 0.0078 | 7.6655 | 23 |
| 0.0087 | 7.7399 | 24 |
| 0.0074 | 7.8006 | 25 |
| 0.0082 | 7.8462 | 26 |
| 0.0113 | 7.8900 | 27 |
| 0.0092 | 7.9273 | 28 |
| 0.0075 | 7.9621 | 29 |
| 0.0066 | 8.0058 | 30 |
| 0.0061 | 8.0359 | 31 |
| 0.0058 | 8.0681 | 32 |
| 0.0043 | 8.0693 | 33 |
| 0.0058 | 8.0939 | 34 |
| 0.0066 | 8.0860 | 35 |
| 0.0065 | 8.0647 | 36 |
| 0.0040 | 8.0451 | 37 |
| 0.0039 | 8.0354 | 38 |
| 0.0050 | 8.0227 | 39 |
| 0.0033 | 8.0230 | 40 |
| 0.0049 | 8.0296 | 41 |
| 0.0055 | 8.0414 | 42 |
| 0.0042 | 8.0576 | 43 |
| 0.0035 | 8.0749 | 44 |
| 0.0041 | 8.0896 | 45 |
| 0.0032 | 8.1037 | 46 |
| 0.0037 | 8.1187 | 47 |
| 0.0038 | 8.1324 | 48 |
| 0.0040 | 8.1458 | 49 |
| 0.0046 | 8.1626 | 50 |
| 0.0028 | 8.1726 | 51 |
| 0.0061 | 8.1180 | 52 |
| 0.0043 | 8.0579 | 53 |
| 0.0032 | 8.0223 | 54 |
| 0.0029 | 8.0125 | 55 |
| 0.0068 | 8.0192 | 56 |
| 0.0034 | 8.0336 | 57 |
| 0.0044 | 8.0478 | 58 |
| 0.0025 | 8.0648 | 59 |
| 0.0026 | 8.0813 | 60 |
| 0.0031 | 8.0949 | 61 |
| 0.0024 | 8.1060 | 62 |
| 0.0030 | 8.1093 | 63 |
| 0.0051 | 8.1350 | 64 |
| 0.0046 | 8.1498 | 65 |
| 0.0057 | 8.1556 | 66 |
| 0.0030 | 8.1641 | 67 |
| 0.0038 | 8.1758 | 68 |
| 0.0040 | 8.1901 | 69 |
| 0.0027 | 8.2013 | 70 |
| 0.0036 | 8.2115 | 71 |
| 0.0055 | 8.2151 | 72 |
| 0.0025 | 8.2120 | 73 |
| 0.0026 | 8.2121 | 74 |
| 0.0036 | 8.2132 | 75 |
| 0.0031 | 8.2141 | 76 |
| 0.0023 | 8.2159 | 77 |
| 0.0036 | 8.2201 | 78 |
| 0.0032 | 8.2284 | 79 |
| 0.0025 | 8.2278 | 80 |
| 0.0030 | 8.2375 | 81 |
| 0.0028 | 8.2451 | 82 |
| 0.0023 | 8.2491 | 83 |
| 0.0073 | 8.2581 | 84 |
| 0.0035 | 8.2639 | 85 |
| 0.0024 | 8.2646 | 86 |
| 0.0031 | 8.2628 | 87 |
| 0.0036 | 8.2641 | 88 |
| 0.0025 | 8.2660 | 89 |
| 0.0031 | 8.2669 | 90 |
| 0.0047 | 8.2678 | 91 |
| 0.0021 | 8.2687 | 92 |
| 0.0023 | 8.2698 | 93 |
| 0.0026 | 8.2710 | 94 |
### Framework versions
- Transformers 4.44.2
- TensorFlow 2.17.0
- Datasets 3.0.1
- Tokenizers 0.19.1