File size: 5,625 Bytes
8ed42da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e4092e
 
 
8ed42da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe314a9
 
a146e4e
 
 
 
 
 
d3b3c3e
 
 
 
 
8e671c6
 
 
4c0d9fb
 
 
 
9c21bf1
 
 
 
 
 
 
 
 
 
 
 
 
 
0703bbf
 
 
 
 
efaf580
 
 
 
 
d6a1d86
 
 
 
 
 
 
 
 
 
 
 
aa2ccf0
 
 
 
 
345701d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e4092e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ed42da
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
---
library_name: transformers
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: Labira/LabiraPJOK_1_100
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# Labira/LabiraPJOK_1_100

This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0026
- Validation Loss: 8.2710
- Epoch: 94

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 300, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.5573     | 6.1112          | 0     |
| 0.2525     | 4.7174          | 1     |
| 0.4330     | 4.9959          | 2     |
| 0.2496     | 5.5703          | 3     |
| 0.1868     | 5.9061          | 4     |
| 0.1491     | 6.0854          | 5     |
| 0.1951     | 6.3417          | 6     |
| 0.0492     | 6.4913          | 7     |
| 0.0296     | 6.5959          | 8     |
| 0.0352     | 6.7091          | 9     |
| 0.0530     | 6.7985          | 10    |
| 0.0265     | 6.9577          | 11    |
| 0.0239     | 7.1006          | 12    |
| 0.0221     | 7.2133          | 13    |
| 0.0171     | 7.3099          | 14    |
| 0.0154     | 7.4198          | 15    |
| 0.0089     | 7.5009          | 16    |
| 0.0268     | 7.4562          | 17    |
| 0.0150     | 7.4317          | 18    |
| 0.0153     | 7.4442          | 19    |
| 0.0076     | 7.4628          | 20    |
| 0.0137     | 7.5225          | 21    |
| 0.0186     | 7.5907          | 22    |
| 0.0078     | 7.6655          | 23    |
| 0.0087     | 7.7399          | 24    |
| 0.0074     | 7.8006          | 25    |
| 0.0082     | 7.8462          | 26    |
| 0.0113     | 7.8900          | 27    |
| 0.0092     | 7.9273          | 28    |
| 0.0075     | 7.9621          | 29    |
| 0.0066     | 8.0058          | 30    |
| 0.0061     | 8.0359          | 31    |
| 0.0058     | 8.0681          | 32    |
| 0.0043     | 8.0693          | 33    |
| 0.0058     | 8.0939          | 34    |
| 0.0066     | 8.0860          | 35    |
| 0.0065     | 8.0647          | 36    |
| 0.0040     | 8.0451          | 37    |
| 0.0039     | 8.0354          | 38    |
| 0.0050     | 8.0227          | 39    |
| 0.0033     | 8.0230          | 40    |
| 0.0049     | 8.0296          | 41    |
| 0.0055     | 8.0414          | 42    |
| 0.0042     | 8.0576          | 43    |
| 0.0035     | 8.0749          | 44    |
| 0.0041     | 8.0896          | 45    |
| 0.0032     | 8.1037          | 46    |
| 0.0037     | 8.1187          | 47    |
| 0.0038     | 8.1324          | 48    |
| 0.0040     | 8.1458          | 49    |
| 0.0046     | 8.1626          | 50    |
| 0.0028     | 8.1726          | 51    |
| 0.0061     | 8.1180          | 52    |
| 0.0043     | 8.0579          | 53    |
| 0.0032     | 8.0223          | 54    |
| 0.0029     | 8.0125          | 55    |
| 0.0068     | 8.0192          | 56    |
| 0.0034     | 8.0336          | 57    |
| 0.0044     | 8.0478          | 58    |
| 0.0025     | 8.0648          | 59    |
| 0.0026     | 8.0813          | 60    |
| 0.0031     | 8.0949          | 61    |
| 0.0024     | 8.1060          | 62    |
| 0.0030     | 8.1093          | 63    |
| 0.0051     | 8.1350          | 64    |
| 0.0046     | 8.1498          | 65    |
| 0.0057     | 8.1556          | 66    |
| 0.0030     | 8.1641          | 67    |
| 0.0038     | 8.1758          | 68    |
| 0.0040     | 8.1901          | 69    |
| 0.0027     | 8.2013          | 70    |
| 0.0036     | 8.2115          | 71    |
| 0.0055     | 8.2151          | 72    |
| 0.0025     | 8.2120          | 73    |
| 0.0026     | 8.2121          | 74    |
| 0.0036     | 8.2132          | 75    |
| 0.0031     | 8.2141          | 76    |
| 0.0023     | 8.2159          | 77    |
| 0.0036     | 8.2201          | 78    |
| 0.0032     | 8.2284          | 79    |
| 0.0025     | 8.2278          | 80    |
| 0.0030     | 8.2375          | 81    |
| 0.0028     | 8.2451          | 82    |
| 0.0023     | 8.2491          | 83    |
| 0.0073     | 8.2581          | 84    |
| 0.0035     | 8.2639          | 85    |
| 0.0024     | 8.2646          | 86    |
| 0.0031     | 8.2628          | 87    |
| 0.0036     | 8.2641          | 88    |
| 0.0025     | 8.2660          | 89    |
| 0.0031     | 8.2669          | 90    |
| 0.0047     | 8.2678          | 91    |
| 0.0021     | 8.2687          | 92    |
| 0.0023     | 8.2698          | 93    |
| 0.0026     | 8.2710          | 94    |


### Framework versions

- Transformers 4.44.2
- TensorFlow 2.17.0
- Datasets 3.0.1
- Tokenizers 0.19.1