File size: 5,625 Bytes
8ed42da 3e4092e 8ed42da fe314a9 a146e4e d3b3c3e 8e671c6 4c0d9fb 9c21bf1 0703bbf efaf580 d6a1d86 aa2ccf0 345701d 3e4092e 8ed42da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
---
library_name: transformers
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: Labira/LabiraPJOK_1_100
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Labira/LabiraPJOK_1_100
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0026
- Validation Loss: 8.2710
- Epoch: 94
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 300, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.5573 | 6.1112 | 0 |
| 0.2525 | 4.7174 | 1 |
| 0.4330 | 4.9959 | 2 |
| 0.2496 | 5.5703 | 3 |
| 0.1868 | 5.9061 | 4 |
| 0.1491 | 6.0854 | 5 |
| 0.1951 | 6.3417 | 6 |
| 0.0492 | 6.4913 | 7 |
| 0.0296 | 6.5959 | 8 |
| 0.0352 | 6.7091 | 9 |
| 0.0530 | 6.7985 | 10 |
| 0.0265 | 6.9577 | 11 |
| 0.0239 | 7.1006 | 12 |
| 0.0221 | 7.2133 | 13 |
| 0.0171 | 7.3099 | 14 |
| 0.0154 | 7.4198 | 15 |
| 0.0089 | 7.5009 | 16 |
| 0.0268 | 7.4562 | 17 |
| 0.0150 | 7.4317 | 18 |
| 0.0153 | 7.4442 | 19 |
| 0.0076 | 7.4628 | 20 |
| 0.0137 | 7.5225 | 21 |
| 0.0186 | 7.5907 | 22 |
| 0.0078 | 7.6655 | 23 |
| 0.0087 | 7.7399 | 24 |
| 0.0074 | 7.8006 | 25 |
| 0.0082 | 7.8462 | 26 |
| 0.0113 | 7.8900 | 27 |
| 0.0092 | 7.9273 | 28 |
| 0.0075 | 7.9621 | 29 |
| 0.0066 | 8.0058 | 30 |
| 0.0061 | 8.0359 | 31 |
| 0.0058 | 8.0681 | 32 |
| 0.0043 | 8.0693 | 33 |
| 0.0058 | 8.0939 | 34 |
| 0.0066 | 8.0860 | 35 |
| 0.0065 | 8.0647 | 36 |
| 0.0040 | 8.0451 | 37 |
| 0.0039 | 8.0354 | 38 |
| 0.0050 | 8.0227 | 39 |
| 0.0033 | 8.0230 | 40 |
| 0.0049 | 8.0296 | 41 |
| 0.0055 | 8.0414 | 42 |
| 0.0042 | 8.0576 | 43 |
| 0.0035 | 8.0749 | 44 |
| 0.0041 | 8.0896 | 45 |
| 0.0032 | 8.1037 | 46 |
| 0.0037 | 8.1187 | 47 |
| 0.0038 | 8.1324 | 48 |
| 0.0040 | 8.1458 | 49 |
| 0.0046 | 8.1626 | 50 |
| 0.0028 | 8.1726 | 51 |
| 0.0061 | 8.1180 | 52 |
| 0.0043 | 8.0579 | 53 |
| 0.0032 | 8.0223 | 54 |
| 0.0029 | 8.0125 | 55 |
| 0.0068 | 8.0192 | 56 |
| 0.0034 | 8.0336 | 57 |
| 0.0044 | 8.0478 | 58 |
| 0.0025 | 8.0648 | 59 |
| 0.0026 | 8.0813 | 60 |
| 0.0031 | 8.0949 | 61 |
| 0.0024 | 8.1060 | 62 |
| 0.0030 | 8.1093 | 63 |
| 0.0051 | 8.1350 | 64 |
| 0.0046 | 8.1498 | 65 |
| 0.0057 | 8.1556 | 66 |
| 0.0030 | 8.1641 | 67 |
| 0.0038 | 8.1758 | 68 |
| 0.0040 | 8.1901 | 69 |
| 0.0027 | 8.2013 | 70 |
| 0.0036 | 8.2115 | 71 |
| 0.0055 | 8.2151 | 72 |
| 0.0025 | 8.2120 | 73 |
| 0.0026 | 8.2121 | 74 |
| 0.0036 | 8.2132 | 75 |
| 0.0031 | 8.2141 | 76 |
| 0.0023 | 8.2159 | 77 |
| 0.0036 | 8.2201 | 78 |
| 0.0032 | 8.2284 | 79 |
| 0.0025 | 8.2278 | 80 |
| 0.0030 | 8.2375 | 81 |
| 0.0028 | 8.2451 | 82 |
| 0.0023 | 8.2491 | 83 |
| 0.0073 | 8.2581 | 84 |
| 0.0035 | 8.2639 | 85 |
| 0.0024 | 8.2646 | 86 |
| 0.0031 | 8.2628 | 87 |
| 0.0036 | 8.2641 | 88 |
| 0.0025 | 8.2660 | 89 |
| 0.0031 | 8.2669 | 90 |
| 0.0047 | 8.2678 | 91 |
| 0.0021 | 8.2687 | 92 |
| 0.0023 | 8.2698 | 93 |
| 0.0026 | 8.2710 | 94 |
### Framework versions
- Transformers 4.44.2
- TensorFlow 2.17.0
- Datasets 3.0.1
- Tokenizers 0.19.1
|