|
--- |
|
base_model: google/gemma-2-9b |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- unsloth |
|
- gemma2 |
|
- trl |
|
license: cc-by-sa-4.0 |
|
language: |
|
- en |
|
- ja |
|
--- |
|
|
|
# Uploaded model |
|
|
|
- **Developed by:** Kohsaku |
|
- **License:** CC BY-NC-ND 4.0 |
|
- **Finetuned from model :** google/gemma-2-9b |
|
|
|
This gemma2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. |
|
|
|
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |
|
|
|
推論コード |
|
|
|
なお、環境変数 HF_TOKENは別途設定されているものとします。 |
|
|
|
``` pip install |
|
# Colabratory例 |
|
!pip uninstall unsloth -y |
|
!pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" |
|
!pip install --upgrade torch |
|
!pip install --upgrade xformers |
|
!pip install ipywidgets --upgrade |
|
|
|
import torch |
|
if torch.cuda.get_device_capability()[0] >= 8: |
|
!pip install --no-deps packaging ninja einops "flash-attn>=2.6.3" |
|
``` |
|
|
|
``` sample code |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig |
|
from unsloth import FastLanguageModel |
|
import torch |
|
import json |
|
|
|
model_name = "Kohsaku/gemma-2-9b-finetune-4" |
|
|
|
max_seq_length = 1024 |
|
|
|
dtype = None |
|
load_in_4bit = True |
|
|
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
model_name = model_name, |
|
max_seq_length = max_seq_length, |
|
dtype = dtype, |
|
load_in_4bit = load_in_4bit, |
|
token = HF_TOKEN, |
|
) |
|
FastLanguageModel.for_inference(model) |
|
|
|
text = "自然言語処理とは何か" |
|
tokenized_input = tokenizer.encode(text, add_special_tokens=True , return_tensors="pt").to(model.device) |
|
|
|
with torch.no_grad(): |
|
output = model.generate( |
|
tokenized_input, |
|
max_new_tokens = 1024, |
|
use_cache = True, |
|
do_sample=False, |
|
repetition_penalty=1.2 |
|
)[0] |
|
print(tokenizer.decode(output)) |
|
|
|
# ELYZA-tasks-100-TVによる評価 |
|
# ELYZA-tasks-100-TVの読み込み。事前にファイルをアップロードしてください |
|
# データセットの読み込み。 |
|
# omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。 |
|
datasets = [] |
|
with open("elyza-tasks-100-TV_0.jsonl", "r") as f: |
|
item = "" |
|
for line in f: |
|
line = line.strip() |
|
item += line |
|
if item.endswith("}"): |
|
datasets.append(json.loads(item)) |
|
item = "" |
|
|
|
# 学習したモデルを用いてタスクを実行 |
|
from tqdm import tqdm |
|
|
|
# 推論するためにモデルのモードを変更 |
|
FastLanguageModel.for_inference(model) |
|
|
|
results = [] |
|
for dt in tqdm(datasets): |
|
input = dt["input"] |
|
|
|
prompt = f"""### 指示\n{input}\n### 回答\n""" |
|
|
|
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device) |
|
|
|
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2) |
|
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1] |
|
|
|
results.append({"task_id": dt["task_id"], "input": input, "output": prediction}) |
|
|
|
# jsonlで保存 |
|
with open(f"{model_name.split('/')[-1]}_outputs.jsonl", 'w', encoding='utf-8') as f: |
|
for result in results: |
|
json.dump(result, f, ensure_ascii=False) |
|
f.write('\n') |
|
``` |