update
Browse files
README.md
CHANGED
@@ -22,11 +22,14 @@ This gemma2 model was trained 2x faster with [Unsloth](https://github.com/unslot
|
|
22 |
|
23 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
24 |
|
25 |
-
|
|
|
|
|
|
|
26 |
``` pip install
|
27 |
# Colabratory例
|
28 |
!pip uninstall unsloth -y
|
29 |
-
!pip install
|
30 |
!pip install --upgrade torch
|
31 |
!pip install --upgrade xformers
|
32 |
!pip install ipywidgets --upgrade
|
@@ -40,6 +43,7 @@ if torch.cuda.get_device_capability()[0] >= 8:
|
|
40 |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
41 |
from unsloth import FastLanguageModel
|
42 |
import torch
|
|
|
43 |
|
44 |
model_name = "Kohsaku/gemma-2-9b-finetune-4"
|
45 |
|
@@ -69,4 +73,43 @@ with torch.no_grad():
|
|
69 |
repetition_penalty=1.2
|
70 |
)[0]
|
71 |
print(tokenizer.decode(output))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
```
|
|
|
22 |
|
23 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
24 |
|
25 |
+
推論コード
|
26 |
+
|
27 |
+
なお、環境変数 HF_TOKENは別途設定されているものとします。
|
28 |
+
|
29 |
``` pip install
|
30 |
# Colabratory例
|
31 |
!pip uninstall unsloth -y
|
32 |
+
!pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
|
33 |
!pip install --upgrade torch
|
34 |
!pip install --upgrade xformers
|
35 |
!pip install ipywidgets --upgrade
|
|
|
43 |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
44 |
from unsloth import FastLanguageModel
|
45 |
import torch
|
46 |
+
import json
|
47 |
|
48 |
model_name = "Kohsaku/gemma-2-9b-finetune-4"
|
49 |
|
|
|
73 |
repetition_penalty=1.2
|
74 |
)[0]
|
75 |
print(tokenizer.decode(output))
|
76 |
+
|
77 |
+
# ELYZA-tasks-100-TVによる評価
|
78 |
+
# ELYZA-tasks-100-TVの読み込み。事前にファイルをアップロードしてください
|
79 |
+
# データセットの読み込み。
|
80 |
+
# omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。
|
81 |
+
datasets = []
|
82 |
+
with open("elyza-tasks-100-TV_0.jsonl", "r") as f:
|
83 |
+
item = ""
|
84 |
+
for line in f:
|
85 |
+
line = line.strip()
|
86 |
+
item += line
|
87 |
+
if item.endswith("}"):
|
88 |
+
datasets.append(json.loads(item))
|
89 |
+
item = ""
|
90 |
+
|
91 |
+
# 学習したモデルを用いてタスクを実行
|
92 |
+
from tqdm import tqdm
|
93 |
+
|
94 |
+
# 推論するためにモデルのモードを変更
|
95 |
+
FastLanguageModel.for_inference(model)
|
96 |
+
|
97 |
+
results = []
|
98 |
+
for dt in tqdm(datasets):
|
99 |
+
input = dt["input"]
|
100 |
+
|
101 |
+
prompt = f"""### 指示\n{input}\n### 回答\n"""
|
102 |
+
|
103 |
+
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
|
104 |
+
|
105 |
+
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
|
106 |
+
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
|
107 |
+
|
108 |
+
results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
|
109 |
+
|
110 |
+
# jsonlで保存
|
111 |
+
with open(f"{model_name.split('/')[-1]}_outputs.jsonl", 'w', encoding='utf-8') as f:
|
112 |
+
for result in results:
|
113 |
+
json.dump(result, f, ensure_ascii=False)
|
114 |
+
f.write('\n')
|
115 |
```
|