NinjaDolphin-7B / README.md
FelixChao's picture
Update README.md
f241440 verified
---
license: apache-2.0
tags:
- merge
- beowolx/CodeNinja-1.0-OpenChat-7B
- beowolx/MistralHermes-CodePro-7B-v1
model-index:
- name: NinjaDolphin-7B
results:
- task:
type: text-generation # Required. Example: automatic-speech-recognition
dataset:
type: openai_humaneval # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
name: HumanEval # Required. A pretty name for the dataset. Example: Common Voice (French)
metrics:
- type: pass@1 # Required. Example: wer. Use metric id from https://hf.co/metrics
value: 52.4390243902439 # Required. Example: 20.90
name: pass@1 # Optional. Example: Test WER
verified: false
---
# NinjaDolphin-7B
NinjaDolphin-7B is a merge of the following models using:
* [beowolx/CodeNinja-1.0-OpenChat-7B](https://huggingface.co/beowolx/CodeNinja-1.0-OpenChat-7B)
* [beowolx/MistralHermes-CodePro-7B-v1](https://huggingface.co/beowolx/MistralHermes-CodePro-7B-v1)
Improving coding ability from [FelixChao/WizardDolphin-7B](https://huggingface.co/FelixChao/WizardDolphin-7B).
## HumanEval (uninstructed and no post-process)
| Metric | Value |
| --- | --- |
| humaneval-python |52.4390243902439|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64a53b0747a04f0512941b6f/NIALzUR53HC1eB1i_xwKD.png)
## 🧩 Configuration
```yaml
models:
- model: FelixChao/WizardDolphin-7B
- model: beowolx/CodeNinja-1.0-OpenChat-7B
parameters:
density: 0.53
weight: 0.3
- model: beowolx/MistralHermes-CodePro-7B-v1
parameters:
density: 0.53
weight: 0.3
merge_method: dare_ties
base_model: FelixChao/WizardDolphin-7B
parameters:
int8_mask: true
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "FelixChao/NinjaDolphin-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_FelixChao__NinjaDolphin-7B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |69.74|
|AI2 Reasoning Challenge (25-Shot)|65.61|
|HellaSwag (10-Shot) |85.35|
|MMLU (5-Shot) |64.43|
|TruthfulQA (0-shot) |54.94|
|Winogrande (5-shot) |80.27|
|GSM8k (5-shot) |67.85|