File size: 3,057 Bytes
8532fd8 f842dc3 8532fd8 0c2f691 8532fd8 f241440 8532fd8 d7acb1c 90cfef6 dd225bb 8532fd8 0c2f691 8532fd8 d7acb1c dd225bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
license: apache-2.0
tags:
- merge
- beowolx/CodeNinja-1.0-OpenChat-7B
- beowolx/MistralHermes-CodePro-7B-v1
model-index:
- name: NinjaDolphin-7B
results:
- task:
type: text-generation # Required. Example: automatic-speech-recognition
dataset:
type: openai_humaneval # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
name: HumanEval # Required. A pretty name for the dataset. Example: Common Voice (French)
metrics:
- type: pass@1 # Required. Example: wer. Use metric id from https://hf.co/metrics
value: 52.4390243902439 # Required. Example: 20.90
name: pass@1 # Optional. Example: Test WER
verified: false
---
# NinjaDolphin-7B
NinjaDolphin-7B is a merge of the following models using:
* [beowolx/CodeNinja-1.0-OpenChat-7B](https://huggingface.co/beowolx/CodeNinja-1.0-OpenChat-7B)
* [beowolx/MistralHermes-CodePro-7B-v1](https://huggingface.co/beowolx/MistralHermes-CodePro-7B-v1)
Improving coding ability from [FelixChao/WizardDolphin-7B](https://huggingface.co/FelixChao/WizardDolphin-7B).
## HumanEval (uninstructed and no post-process)
| Metric | Value |
| --- | --- |
| humaneval-python |52.4390243902439|

## 🧩 Configuration
```yaml
models:
- model: FelixChao/WizardDolphin-7B
- model: beowolx/CodeNinja-1.0-OpenChat-7B
parameters:
density: 0.53
weight: 0.3
- model: beowolx/MistralHermes-CodePro-7B-v1
parameters:
density: 0.53
weight: 0.3
merge_method: dare_ties
base_model: FelixChao/WizardDolphin-7B
parameters:
int8_mask: true
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "FelixChao/NinjaDolphin-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_FelixChao__NinjaDolphin-7B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |69.74|
|AI2 Reasoning Challenge (25-Shot)|65.61|
|HellaSwag (10-Shot) |85.35|
|MMLU (5-Shot) |64.43|
|TruthfulQA (0-shot) |54.94|
|Winogrande (5-shot) |80.27|
|GSM8k (5-shot) |67.85|
|