|
|
|
--- |
|
base_model: hfl/chinese-macbert-base |
|
datasets: |
|
- CIRCL/Vulnerability-CNVD |
|
library_name: transformers |
|
license: apache-2.0 |
|
metrics: |
|
- accuracy |
|
tags: |
|
- generated_from_trainer |
|
- text-classification |
|
- classification |
|
- nlp |
|
- chinese |
|
- vulnerability |
|
pipeline_tag: text-classification |
|
language: zh |
|
model-index: |
|
- name: vulnerability-severity-classification-chinese-macbert-base |
|
results: [] |
|
--- |
|
|
|
# VLAI: A RoBERTa-Based Model for Automated Vulnerability Severity Classification (Chinese Text) |
|
|
|
This model is a fine-tuned version of [hfl/chinese-macbert-base](https://huggingface.co/hfl/chinese-macbert-base) on the dataset [CIRCL/Vulnerability-CNVD](https://huggingface.co/datasets/CIRCL/Vulnerability-CNVD). |
|
|
|
For more information, visit the [Vulnerability-Lookup project page](https://vulnerability.circl.lu) or the [ML-Gateway GitHub repository](https://github.com/vulnerability-lookup/ML-Gateway), which demonstrates its usage in a FastAPI server. |
|
|
|
It achieves the following results on the evaluation set: |
|
|
|
- Loss: 0.6172 |
|
- Accuracy: 0.7817 |
|
|
|
## How to use |
|
|
|
You can use this model directly with the Hugging Face `transformers` library for text classification: |
|
|
|
```python |
|
from transformers import pipeline |
|
|
|
classifier = pipeline( |
|
"text-classification", |
|
model="CIRCL/vulnerability-severity-classification-chinese-macbert-base" |
|
) |
|
|
|
# Example usage for a Chinese vulnerability description |
|
description_chinese = "TOTOLINK A3600R是中国吉翁电子(TOTOLINK)公司的一款6天线1200M无线路由器。TOTOLINK A3600R存在缓冲区溢出漏洞,该漏洞源于/cgi-bin/cstecgi.cgi文件的UploadCustomModule函数中的File参数未能正确验证输入数据的长度大小,攻击者可利用该漏洞在系统上执行任意代码或者导致拒绝服务。" |
|
result_chinese = classifier(description_chinese) |
|
print(result_chinese) |
|
# Expected output example: [{'label': '高', 'score': 0.9802}] |
|
``` |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:| |
|
| 0.6329 | 1.0 | 3412 | 0.5832 | 0.7546 | |
|
| 0.5215 | 2.0 | 6824 | 0.5531 | 0.7750 | |
|
| 0.4827 | 3.0 | 10236 | 0.5521 | 0.7768 | |
|
| 0.3448 | 4.0 | 13648 | 0.5822 | 0.7814 | |
|
| 0.3865 | 5.0 | 17060 | 0.6172 | 0.7817 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.51.3 |
|
- Pytorch 2.7.1+cu126 |
|
- Datasets 3.6.0 |
|
- Tokenizers 0.21.1 |
|
|