VLAI: A RoBERTa-Based Model for Automated Vulnerability Severity Classification (Chinese Text)
This model is a fine-tuned version of hfl/chinese-macbert-base on the dataset CIRCL/Vulnerability-CNVD.
For more information, visit the Vulnerability-Lookup project page or the ML-Gateway GitHub repository, which demonstrates its usage in a FastAPI server.
It achieves the following results on the evaluation set:
- Loss: 0.5994
- Accuracy: 0.7900
How to use
You can use this model directly with the Hugging Face transformers
library for text classification:
from transformers import pipeline
classifier = pipeline(
"text-classification",
model="CIRCL/vulnerability-severity-classification-chinese-macbert-base"
)
# Example usage for a Chinese vulnerability description
description_chinese = "TOTOLINK A3600R是中国吉翁电子(TOTOLINK)公司的一款6天线1200M无线路由器。TOTOLINK A3600R存在缓冲区溢出漏洞,该漏洞源于/cgi-bin/cstecgi.cgi文件的UploadCustomModule函数中的File参数未能正确验证输入数据的长度大小,攻击者可利用该漏洞在系统上执行任意代码或者导致拒绝服务。"
result_chinese = classifier(description_chinese)
print(result_chinese)
# Expected output example: [{'label': '高', 'score': 0.9802}]
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.65 | 1.0 | 3388 | 0.5772 | 0.7561 |
0.582 | 2.0 | 6776 | 0.5656 | 0.7620 |
0.5284 | 3.0 | 10164 | 0.5274 | 0.7881 |
0.3406 | 4.0 | 13552 | 0.5555 | 0.7869 |
0.3224 | 5.0 | 16940 | 0.5994 | 0.7900 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.7.1+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 111
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for CIRCL/vulnerability-severity-classification-chinese-macbert-base
Base model
hfl/chinese-macbert-base