|
--- |
|
library_name: transformers |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- bleu |
|
model-index: |
|
- name: rotating-head-gp-gpt2-medium-wikitext |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# rotating-head-gp-gpt2-medium-wikitext |
|
|
|
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.1692 |
|
- Accuracy: 0.4228 |
|
- Perplexity: 23.7877 |
|
- Bleu: 0.1332 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 7 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Accuracy | Bleu | Validation Loss | Perplexity | |
|
|:-------------:|:------:|:-----:|:--------:|:------:|:---------------:|:----------:| |
|
| 5.9062 | 0.2806 | 500 | 0.2234 | 0.0493 | 5.7470 | 313.2463 | |
|
| 4.8598 | 0.5612 | 1000 | 0.2811 | 0.0698 | 4.7428 | 114.7554 | |
|
| 4.3025 | 0.8418 | 1500 | 0.3170 | 0.0834 | 4.2329 | 68.9191 | |
|
| 3.9635 | 1.1223 | 2000 | 0.3454 | 0.0932 | 3.9291 | 50.8590 | |
|
| 3.7769 | 1.4029 | 2500 | 0.3636 | 0.1020 | 3.7427 | 42.2098 | |
|
| 3.6738 | 1.6835 | 3000 | 0.3754 | 0.1066 | 3.6225 | 37.4295 | |
|
| 3.5744 | 1.9641 | 3500 | 0.3845 | 0.1118 | 3.5325 | 34.2102 | |
|
| 3.456 | 2.2447 | 4000 | 0.3902 | 0.1139 | 3.4704 | 32.1497 | |
|
| 3.3972 | 2.5253 | 4500 | 0.3955 | 0.1230 | 3.4190 | 30.5384 | |
|
| 3.3654 | 2.8058 | 5000 | 0.4007 | 0.1230 | 3.3686 | 29.0392 | |
|
| 3.247 | 3.0864 | 5500 | 0.4043 | 0.1247 | 3.3328 | 28.0168 | |
|
| 3.2403 | 3.3670 | 6000 | 0.4083 | 0.1298 | 3.2985 | 27.0714 | |
|
| 3.2167 | 3.6476 | 6500 | 0.4112 | 0.1288 | 3.2693 | 26.2922 | |
|
| 3.1903 | 3.9282 | 7000 | 0.4134 | 0.1305 | 3.2456 | 25.6768 | |
|
| 3.1212 | 4.2088 | 7500 | 0.4161 | 0.1325 | 3.2262 | 25.1831 | |
|
| 3.0816 | 4.4893 | 8000 | 0.4176 | 0.1307 | 3.2128 | 24.8480 | |
|
| 3.0917 | 4.7699 | 8500 | 0.4196 | 0.1339 | 3.1985 | 24.4954 | |
|
| 3.0562 | 5.0505 | 9000 | 0.4185 | 0.1326 | 3.2049 | 24.6521 | |
|
| 3.0683 | 5.3311 | 9500 | 0.4195 | 0.1307 | 3.1970 | 24.4597 | |
|
| 3.0502 | 5.6117 | 10000 | 0.4209 | 0.1331 | 3.1857 | 24.1847 | |
|
| 3.0469 | 5.8923 | 10500 | 0.4217 | 0.1309 | 3.1790 | 24.0231 | |
|
| 3.0245 | 6.1728 | 11000 | 3.1863 | 0.4205 | 24.1979 | 0.1294 | |
|
| 3.0203 | 6.4534 | 11500 | 3.1783 | 0.4218 | 24.0068 | 0.1331 | |
|
| 3.0265 | 6.7340 | 12000 | 3.1692 | 0.4228 | 23.7877 | 0.1332 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.49.0 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 3.3.2 |
|
- Tokenizers 0.21.0 |
|
|