File size: 3,547 Bytes
d036c0e dd44b81 d036c0e dd44b81 d036c0e 8a41221 7079385 dd44b81 d036c0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
library_name: transformers
tags:
- generated_from_trainer
metrics:
- accuracy
- bleu
model-index:
- name: rotating-head-gp-gpt2-medium-wikitext
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# rotating-head-gp-gpt2-medium-wikitext
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1692
- Accuracy: 0.4228
- Perplexity: 23.7877
- Bleu: 0.1332
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 7
### Training results
| Training Loss | Epoch | Step | Accuracy | Bleu | Validation Loss | Perplexity |
|:-------------:|:------:|:-----:|:--------:|:------:|:---------------:|:----------:|
| 5.9062 | 0.2806 | 500 | 0.2234 | 0.0493 | 5.7470 | 313.2463 |
| 4.8598 | 0.5612 | 1000 | 0.2811 | 0.0698 | 4.7428 | 114.7554 |
| 4.3025 | 0.8418 | 1500 | 0.3170 | 0.0834 | 4.2329 | 68.9191 |
| 3.9635 | 1.1223 | 2000 | 0.3454 | 0.0932 | 3.9291 | 50.8590 |
| 3.7769 | 1.4029 | 2500 | 0.3636 | 0.1020 | 3.7427 | 42.2098 |
| 3.6738 | 1.6835 | 3000 | 0.3754 | 0.1066 | 3.6225 | 37.4295 |
| 3.5744 | 1.9641 | 3500 | 0.3845 | 0.1118 | 3.5325 | 34.2102 |
| 3.456 | 2.2447 | 4000 | 0.3902 | 0.1139 | 3.4704 | 32.1497 |
| 3.3972 | 2.5253 | 4500 | 0.3955 | 0.1230 | 3.4190 | 30.5384 |
| 3.3654 | 2.8058 | 5000 | 0.4007 | 0.1230 | 3.3686 | 29.0392 |
| 3.247 | 3.0864 | 5500 | 0.4043 | 0.1247 | 3.3328 | 28.0168 |
| 3.2403 | 3.3670 | 6000 | 0.4083 | 0.1298 | 3.2985 | 27.0714 |
| 3.2167 | 3.6476 | 6500 | 0.4112 | 0.1288 | 3.2693 | 26.2922 |
| 3.1903 | 3.9282 | 7000 | 0.4134 | 0.1305 | 3.2456 | 25.6768 |
| 3.1212 | 4.2088 | 7500 | 0.4161 | 0.1325 | 3.2262 | 25.1831 |
| 3.0816 | 4.4893 | 8000 | 0.4176 | 0.1307 | 3.2128 | 24.8480 |
| 3.0917 | 4.7699 | 8500 | 0.4196 | 0.1339 | 3.1985 | 24.4954 |
| 3.0562 | 5.0505 | 9000 | 0.4185 | 0.1326 | 3.2049 | 24.6521 |
| 3.0683 | 5.3311 | 9500 | 0.4195 | 0.1307 | 3.1970 | 24.4597 |
| 3.0502 | 5.6117 | 10000 | 0.4209 | 0.1331 | 3.1857 | 24.1847 |
| 3.0469 | 5.8923 | 10500 | 0.4217 | 0.1309 | 3.1790 | 24.0231 |
| 3.0245 | 6.1728 | 11000 | 3.1863 | 0.4205 | 24.1979 | 0.1294 |
| 3.0203 | 6.4534 | 11500 | 3.1783 | 0.4218 | 24.0068 | 0.1331 |
| 3.0265 | 6.7340 | 12000 | 3.1692 | 0.4228 | 23.7877 | 0.1332 |
### Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
|