shivanandmn commited on
Commit
8a41221
·
verified ·
1 Parent(s): 75c28ac

Model save

Browse files
Files changed (1) hide show
  1. README.md +28 -24
README.md CHANGED
@@ -17,10 +17,10 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
- - Accuracy: 0.4196
21
- - Bleu: 0.1339
22
- - Loss: 3.1985
23
- - Perplexity: 24.4954
24
 
25
  ## Model description
26
 
@@ -46,29 +46,33 @@ The following hyperparameters were used during training:
46
  - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
47
  - lr_scheduler_type: linear
48
  - lr_scheduler_warmup_ratio: 0.1
49
- - num_epochs: 5
50
 
51
  ### Training results
52
 
53
- | Training Loss | Epoch | Step | Accuracy | Bleu | Validation Loss | Perplexity |
54
- |:-------------:|:------:|:----:|:--------:|:------:|:---------------:|:----------:|
55
- | 5.9062 | 0.2806 | 500 | 0.2234 | 0.0493 | 5.7470 | 313.2463 |
56
- | 4.8598 | 0.5612 | 1000 | 0.2811 | 0.0698 | 4.7428 | 114.7554 |
57
- | 4.3025 | 0.8418 | 1500 | 0.3170 | 0.0834 | 4.2329 | 68.9191 |
58
- | 3.9635 | 1.1223 | 2000 | 0.3454 | 0.0932 | 3.9291 | 50.8590 |
59
- | 3.7769 | 1.4029 | 2500 | 0.3636 | 0.1020 | 3.7427 | 42.2098 |
60
- | 3.6738 | 1.6835 | 3000 | 0.3754 | 0.1066 | 3.6225 | 37.4295 |
61
- | 3.5744 | 1.9641 | 3500 | 0.3845 | 0.1118 | 3.5325 | 34.2102 |
62
- | 3.456 | 2.2447 | 4000 | 0.3902 | 0.1139 | 3.4704 | 32.1497 |
63
- | 3.3972 | 2.5253 | 4500 | 0.3955 | 0.1230 | 3.4190 | 30.5384 |
64
- | 3.3654 | 2.8058 | 5000 | 0.4007 | 0.1230 | 3.3686 | 29.0392 |
65
- | 3.247 | 3.0864 | 5500 | 0.4043 | 0.1247 | 3.3328 | 28.0168 |
66
- | 3.2403 | 3.3670 | 6000 | 0.4083 | 0.1298 | 3.2985 | 27.0714 |
67
- | 3.2167 | 3.6476 | 6500 | 0.4112 | 0.1288 | 3.2693 | 26.2922 |
68
- | 3.1903 | 3.9282 | 7000 | 0.4134 | 0.1305 | 3.2456 | 25.6768 |
69
- | 3.1212 | 4.2088 | 7500 | 0.4161 | 0.1325 | 3.2262 | 25.1831 |
70
- | 3.0816 | 4.4893 | 8000 | 0.4176 | 0.1307 | 3.2128 | 24.8480 |
71
- | 3.0917 | 4.7699 | 8500 | 0.4196 | 0.1339 | 3.1985 | 24.4954 |
 
 
 
 
72
 
73
 
74
  ### Framework versions
 
17
 
18
  This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 3.1790
21
+ - Accuracy: 0.4217
22
+ - Perplexity: 24.0231
23
+ - Bleu: 0.1309
24
 
25
  ## Model description
26
 
 
46
  - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
47
  - lr_scheduler_type: linear
48
  - lr_scheduler_warmup_ratio: 0.1
49
+ - num_epochs: 6
50
 
51
  ### Training results
52
 
53
+ | Training Loss | Epoch | Step | Accuracy | Bleu | Validation Loss | Perplexity |
54
+ |:-------------:|:------:|:-----:|:--------:|:------:|:---------------:|:----------:|
55
+ | 5.9062 | 0.2806 | 500 | 0.2234 | 0.0493 | 5.7470 | 313.2463 |
56
+ | 4.8598 | 0.5612 | 1000 | 0.2811 | 0.0698 | 4.7428 | 114.7554 |
57
+ | 4.3025 | 0.8418 | 1500 | 0.3170 | 0.0834 | 4.2329 | 68.9191 |
58
+ | 3.9635 | 1.1223 | 2000 | 0.3454 | 0.0932 | 3.9291 | 50.8590 |
59
+ | 3.7769 | 1.4029 | 2500 | 0.3636 | 0.1020 | 3.7427 | 42.2098 |
60
+ | 3.6738 | 1.6835 | 3000 | 0.3754 | 0.1066 | 3.6225 | 37.4295 |
61
+ | 3.5744 | 1.9641 | 3500 | 0.3845 | 0.1118 | 3.5325 | 34.2102 |
62
+ | 3.456 | 2.2447 | 4000 | 0.3902 | 0.1139 | 3.4704 | 32.1497 |
63
+ | 3.3972 | 2.5253 | 4500 | 0.3955 | 0.1230 | 3.4190 | 30.5384 |
64
+ | 3.3654 | 2.8058 | 5000 | 0.4007 | 0.1230 | 3.3686 | 29.0392 |
65
+ | 3.247 | 3.0864 | 5500 | 0.4043 | 0.1247 | 3.3328 | 28.0168 |
66
+ | 3.2403 | 3.3670 | 6000 | 0.4083 | 0.1298 | 3.2985 | 27.0714 |
67
+ | 3.2167 | 3.6476 | 6500 | 0.4112 | 0.1288 | 3.2693 | 26.2922 |
68
+ | 3.1903 | 3.9282 | 7000 | 0.4134 | 0.1305 | 3.2456 | 25.6768 |
69
+ | 3.1212 | 4.2088 | 7500 | 0.4161 | 0.1325 | 3.2262 | 25.1831 |
70
+ | 3.0816 | 4.4893 | 8000 | 0.4176 | 0.1307 | 3.2128 | 24.8480 |
71
+ | 3.0917 | 4.7699 | 8500 | 0.4196 | 0.1339 | 3.1985 | 24.4954 |
72
+ | 3.0562 | 5.0505 | 9000 | 3.2049 | 0.4185 | 24.6521 | 0.1326 |
73
+ | 3.0683 | 5.3311 | 9500 | 3.1970 | 0.4195 | 24.4597 | 0.1307 |
74
+ | 3.0502 | 5.6117 | 10000 | 3.1857 | 0.4209 | 24.1847 | 0.1331 |
75
+ | 3.0469 | 5.8923 | 10500 | 3.1790 | 0.4217 | 24.0231 | 0.1309 |
76
 
77
 
78
  ### Framework versions