|
# BERT-Base-Uncased Quantized Model for twitter-tweet-sentiment-classification |
|
|
|
This repository hosts a quantized version of the BERT model, fine-tuned for twitter-tweet-sentiment-classification tasks. The model has been optimized for efficient deployment while maintaining high accuracy, making it suitable for resource-constrained environments. |
|
|
|
## Model Details |
|
|
|
- **Model Architecture:** BERT Base Uncased |
|
- **Task:** twitter-tweet-sentiment-classification |
|
- **Dataset:** Stanford Sentiment Treebank v2 (SST2) |
|
- **Quantization:** Float16 |
|
- **Fine-tuning Framework:** Hugging Face Transformers |
|
|
|
## Usage |
|
|
|
### Installation |
|
|
|
```sh |
|
pip install transformers torch |
|
``` |
|
|
|
|
|
### Loading the Model |
|
|
|
```python |
|
|
|
from transformers import BertForSequenceClassification, BertTokenizer |
|
import torch |
|
|
|
# Load quantized model |
|
quantized_model_path = "/kaggle/working/bert_finetuned_fp16" |
|
quantized_model = BertForSequenceClassification.from_pretrained(quantized_model_path) |
|
quantized_model.eval() # Set to evaluation mode |
|
quantized_model.half() # Convert model to FP16 |
|
|
|
# Load tokenizer |
|
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") |
|
|
|
# Define a test sentence |
|
test_sentence = "It's just fine, nothing extraordinary" |
|
|
|
# Tokenize input |
|
inputs = tokenizer(test_sentence, return_tensors="pt", padding=True, truncation=True, max_length=128) |
|
|
|
# Ensure input tensors are in correct dtype |
|
inputs["input_ids"] = inputs["input_ids"].long() # Convert to long type |
|
inputs["attention_mask"] = inputs["attention_mask"].long() # Convert to long type |
|
|
|
# Make prediction |
|
with torch.no_grad(): |
|
outputs = quantized_model(**inputs) |
|
|
|
# Get predicted class |
|
predicted_class = torch.argmax(outputs.logits, dim=1).item() |
|
print(f"Predicted Class: {predicted_class}") |
|
|
|
|
|
label_mapping = {0: "very_negative", 1: "nagative", 2: "neutral", 3: "Positive", 4: "very_positive"} # Example |
|
|
|
predicted_label = label_mapping[predicted_class] |
|
print(f"Predicted Label: {predicted_label}") |
|
|
|
``` |
|
|
|
## Performance Metrics |
|
|
|
- **Accuracy:** 0.82 |
|
|
|
## Fine-Tuning Details |
|
|
|
### Dataset |
|
|
|
The dataset is taken from Kaggle Stanford Sentiment Treebank v2 (SST2). |
|
|
|
### Training |
|
|
|
- Number of epochs: 3 |
|
- Batch size: 8 |
|
- Evaluation strategy: epoch |
|
- Learning rate: 2e-5 |
|
|
|
### Quantization |
|
|
|
Post-training quantization was applied using PyTorch's built-in quantization framework to reduce the model size and improve inference efficiency. |
|
|
|
## Repository Structure |
|
|
|
``` |
|
. |
|
βββ model/ # Contains the quantized model files |
|
βββ tokenizer_config/ # Tokenizer configuration and vocabulary files |
|
βββ model.safensors/ # Fine Tuned Model |
|
βββ README.md # Model documentation |
|
``` |
|
|
|
## Limitations |
|
|
|
- The model may not generalize well to domains outside the fine-tuning dataset. |
|
- Quantization may result in minor accuracy degradation compared to full-precision models. |
|
|
|
## Contributing |
|
|
|
Contributions are welcome! Feel free to open an issue or submit a pull request if you have suggestions or improvements. |
|
|
|
|