YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
BERT-Base-Uncased Quantized Model for twitter-tweet-sentiment-classification
This repository hosts a quantized version of the BERT model, fine-tuned for twitter-tweet-sentiment-classification tasks. The model has been optimized for efficient deployment while maintaining high accuracy, making it suitable for resource-constrained environments.
Model Details
- Model Architecture: BERT Base Uncased
- Task: twitter-tweet-sentiment-classification
- Dataset: Stanford Sentiment Treebank v2 (SST2)
- Quantization: Float16
- Fine-tuning Framework: Hugging Face Transformers
Usage
Installation
pip install transformers torch
Loading the Model
from transformers import BertForSequenceClassification, BertTokenizer
import torch
# Load quantized model
quantized_model_path = "/kaggle/working/bert_finetuned_fp16"
quantized_model = BertForSequenceClassification.from_pretrained(quantized_model_path)
quantized_model.eval() # Set to evaluation mode
quantized_model.half() # Convert model to FP16
# Load tokenizer
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
# Define a test sentence
test_sentence = "It's just fine, nothing extraordinary"
# Tokenize input
inputs = tokenizer(test_sentence, return_tensors="pt", padding=True, truncation=True, max_length=128)
# Ensure input tensors are in correct dtype
inputs["input_ids"] = inputs["input_ids"].long() # Convert to long type
inputs["attention_mask"] = inputs["attention_mask"].long() # Convert to long type
# Make prediction
with torch.no_grad():
outputs = quantized_model(**inputs)
# Get predicted class
predicted_class = torch.argmax(outputs.logits, dim=1).item()
print(f"Predicted Class: {predicted_class}")
label_mapping = {0: "very_negative", 1: "nagative", 2: "neutral", 3: "Positive", 4: "very_positive"} # Example
predicted_label = label_mapping[predicted_class]
print(f"Predicted Label: {predicted_label}")
Performance Metrics
- Accuracy: 0.82
Fine-Tuning Details
Dataset
The dataset is taken from Kaggle Stanford Sentiment Treebank v2 (SST2).
Training
- Number of epochs: 3
- Batch size: 8
- Evaluation strategy: epoch
- Learning rate: 2e-5
Quantization
Post-training quantization was applied using PyTorch's built-in quantization framework to reduce the model size and improve inference efficiency.
Repository Structure
.
βββ model/ # Contains the quantized model files
βββ tokenizer_config/ # Tokenizer configuration and vocabulary files
βββ model.safensors/ # Fine Tuned Model
βββ README.md # Model documentation
Limitations
- The model may not generalize well to domains outside the fine-tuning dataset.
- Quantization may result in minor accuracy degradation compared to full-precision models.
Contributing
Contributions are welcome! Feel free to open an issue or submit a pull request if you have suggestions or improvements.
- Downloads last month
- 14,238
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.