AdaCodruta's picture
Model save
ca64bff verified
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
model-index:
- name: whisper-medium-ro_private_dataset
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_17_0
type: common_voice_17_0
config: ro
split: test
args: ro
metrics:
- name: Wer
type: wer
value: 12.856841513148643
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-medium-ro_private_dataset
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the common_voice_17_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2179
- Wer Ortho: 14.3915
- Wer: 12.8568
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-------:|:----:|:---------------:|:---------:|:-------:|
| 0.0039 | 6.2112 | 500 | 0.2024 | 14.7619 | 13.1275 |
| 0.0005 | 12.4224 | 1000 | 0.2179 | 14.3915 | 12.8568 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu118
- Datasets 3.1.0
- Tokenizers 0.20.3