AdaCodruta's picture
Model save
ca64bff verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: whisper-medium-ro_private_dataset
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: ro
          split: test
          args: ro
        metrics:
          - name: Wer
            type: wer
            value: 12.856841513148643

whisper-medium-ro_private_dataset

This model is a fine-tuned version of openai/whisper-medium on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2179
  • Wer Ortho: 14.3915
  • Wer: 12.8568

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.0039 6.2112 500 0.2024 14.7619 13.1275
0.0005 12.4224 1000 0.2179 14.3915 12.8568

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.3