Ovis2-2B / processing_ovis.py
Marco
Added a HF compatible preprocessing file
e721eb8
raw
history blame
17.1 kB
# coding=utf-8
# Copyright 2025 The Qwen Team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
from typing import List, Union
import PIL
import torch
from transformers import BatchFeature
from transformers.image_utils import ImageInput
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
from transformers.tokenization_utils_base import TextInput, PreTokenizedInput
IGNORE_ID = -100
IMAGE_TOKEN_ID = -200
IMAGE_TOKEN = "<image>"
IMAGE_ATOM_ID = -300
IMAGE_INDICATOR_IDS = [-301, -302, -303, -304, -305]
class OvisProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {
"padding": False,
},
"images_kwargs": {
'max_partition':9,
'covering_threshold':0.9,
'convert_to_rgb':True,
'return_tensors':'pt'},
}
class OvisProcessor(ProcessorMixin):
r"""
Constructs a Ovis processor which wraps a Ovis image processor and a Qwen2 tokenizer into a single processor.
[`OvisProcessor`] offers all the functionalities of [`Qwen2VLImageProcessor`] and [`Qwen2TokenizerFast`]. See the
[`~OvisProcessor.__call__`] and [`~OvisProcessor.decode`] for more information.
Args:
image_processor ([`Qwen2VLImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`Qwen2TokenizerFast`], *optional*):
The tokenizer is a required input.
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = ["chat_template"]
image_processor_class = "AutoImageProcessor"
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
def __init__(self, image_processor=None, tokenizer=None, chat_template=None, **kwargs):
self.image_token = "<|image_pad|>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token
self.video_token = "<|video_pad|>" if not hasattr(tokenizer, "video_token") else tokenizer.video_token
super().__init__(image_processor, tokenizer, chat_template=chat_template)
def __call__(
self,
images: ImageInput = None,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
**kwargs: Unpack[OvisProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to
Qwen2VLImageProcessor's [`~Qwen2VLImageProcessor.__call__`] if `vision_infos` is not `None`.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
- **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`.
- **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
- **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`.
- **second_per_grid_ts** -- List of video seconds per time grid. Returned when `videos` is not `None`.
"""
output_kwargs = self._merge_kwargs(
OvisProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
# Process all images first
image_features = {}
if images is not None:
processed_images = []
image_placeholders_list = []
# Process each image
for image in images if isinstance(images, list) else [images]:
pixel_values, image_placeholders = self.preprocess_image(
image=image, **output_kwargs["images_kwargs"]
)
processed_images.append(pixel_values)
image_placeholders_list.append(image_placeholders)
# assign all processed images
if processed_images:
image_features["image_placeholders"] = image_placeholders_list
# Process text input
if text is not None:
if not isinstance(text, list):
text = [text]
all_input_ids = torch.tensor([], dtype=torch.long)
all_attention_mask = torch.tensor([], dtype=torch.long)
for idx, txt in enumerate(text):
# Split text by IMAGE_TOKEN
text_parts = txt.split(IMAGE_TOKEN)
# Tokenize each text part
full_input_ids= torch.tensor([], dtype=torch.long)
full_attention_mask = torch.tensor([], dtype=torch.long)
for i, part in enumerate(text_parts):
# Process text part
text_tokens = self.tokenizer(part, **output_kwargs["text_kwargs"])
full_input_ids=torch.cat([full_input_ids,torch.tensor(text_tokens.input_ids, dtype=full_input_ids.dtype, device=full_input_ids.device)], dim=-1)
full_attention_mask=torch.cat([full_attention_mask,torch.tensor(text_tokens.attention_mask)], dim=-1)
# Add image placeholder tokens after each text part (except the last one)
if i < len(text_parts) - 1 and "image_placeholders" in image_features:
if idx < len(image_features["image_placeholders"]):
placeholder_ids = image_features["image_placeholders"][idx]
full_input_ids=torch.cat([full_input_ids,torch.tensor(placeholder_ids).unsqueeze(0)], dim=-1)
full_attention_mask=torch.cat([full_attention_mask,torch.tensor([1] * len(placeholder_ids)).unsqueeze(0)], dim=-1)
last_bigger_tensor_dim = all_input_ids.shape[-1]
if full_input_ids.shape[-1] > last_bigger_tensor_dim > 0: # we skip the first
# we pad the all_input_ids with pad tokens and we adjust the attn mask
all_input_ids = torch.cat([all_input_ids,
torch.full((1, full_input_ids.shape[-1] - last_bigger_tensor_dim),
self.tokenizer.pad_token_id, dtype=torch.long)], dim=-1)
all_attention_mask = torch.cat([all_attention_mask,
torch.zeros((1, full_input_ids.shape[-1] - last_bigger_tensor_dim),
dtype=torch.long)], dim=-1)
last_bigger_tensor_dim = full_input_ids.shape[-1]
all_input_ids = torch.cat([all_input_ids, full_input_ids], dim=0)
all_attention_mask = torch.cat([ all_attention_mask, full_attention_mask], dim=0)
# Create the output with text features
output = BatchFeature(
data={
"input_ids": all_input_ids,
"attention_mask": all_attention_mask,
}
)
# Add image features if present
if image_features:
output["pixel_values"] = processed_images
return output
# If only images were provided
return BatchFeature(data=image_features)
def get_image_size(self):
height = self.image_processor.crop_size["height"]
width = self.image_processor.crop_size["width"]
return height, width
@staticmethod
def construct_image_placeholders(grid):
image_placeholders = [IMAGE_INDICATOR_IDS[0], IMAGE_ATOM_ID, IMAGE_INDICATOR_IDS[1]]
if grid[0] * grid[1] > 1:
for r in range(grid[0]):
for c in range(grid[1]):
image_placeholders.append(IMAGE_ATOM_ID)
if c < grid[1] - 1:
image_placeholders.append(IMAGE_INDICATOR_IDS[2])
if r < grid[0] - 1:
image_placeholders.append(IMAGE_INDICATOR_IDS[3])
image_placeholders.append(IMAGE_INDICATOR_IDS[4])
return image_placeholders
def preprocess_image(self, image: PIL.Image.Image, max_partition, covering_threshold, convert_to_rgb, return_tensors):
def _preprocess(img: PIL.Image.Image, side):
# first resize and preprocess
w, h = img.size
if w == h:
new_width = new_height = side
elif w > h:
new_width = side
new_height = int(h / w * new_width)
else:
new_height = side
new_width = int(w / h * new_height)
new_size = dict(height=new_height, width=new_width)
pixel_values = self.image_processor.preprocess(img, size=new_size, return_tensors=return_tensors)['pixel_values']
# then pad to square
square_values = torch.zeros([1, 3, side, side], dtype=pixel_values.dtype, device=pixel_values.device)
new_height, new_width = pixel_values.shape[2:]
if new_height == new_width:
square_values[:, :, :, :] = pixel_values
elif new_height > new_width:
from_index = (side - new_width) // 2
square_values[:, :, :, from_index:from_index + new_width] = pixel_values
else:
from_index = (side - new_height) // 2
square_values[:, :, from_index:from_index + new_height, :] = pixel_values
return square_values
def _partition(img, grid):
w, h = img.size
row_height = h // grid[0]
col_width = w // grid[1]
partition = []
for row in range(grid[0]):
for col in range(grid[1]):
left = col * col_width
upper = row * row_height
right = w if col == grid[1] - 1 else (col + 1) * col_width
lower = h if row == grid[0] - 1 else (row + 1) * row_height
partition.append((left, upper, right, lower))
return partition
def _covering_area(left, upper, right, lower, side):
w = right - left
h = lower - upper
w, h = max(w, h), min(w, h)
if w > side:
h = h / w * side
w = side
return w * h
def _get_best_grid(img, side):
img_area = img.size[0] * img.size[1]
candidate_grids = []
for i in range(1, max_partition + 1):
for j in range(1, max_partition + 1):
if i * j <= max_partition:
candidate_grids.append((i, j))
all_grids = []
good_grids = []
for grid in candidate_grids:
partition = _partition(img, grid)
covering_ratio = sum([_covering_area(*p, side) for p in partition]) / img_area
assert covering_ratio <= 1.0
all_grids.append((grid, covering_ratio))
if covering_ratio > covering_threshold:
good_grids.append((grid, covering_ratio))
if len(good_grids) > 0:
# pick the good partition with minimum #sub_images and break the tie using covering_ratio
return sorted(good_grids, key=lambda x: (x[0][0] * x[0][1], -x[1]))[0][0]
else:
# pick the partition with maximum covering_ratio and break the tie using #sub_images
return sorted(all_grids, key=lambda x: (-x[1], x[0][0] * x[0][1]))[0][0]
if convert_to_rgb and image.mode != 'RGB':
image = image.convert('RGB')
sides = self.get_image_size()
if sides[0] != sides[1]:
raise ValueError('get_image_size() returns non-square size')
side = sides[0]
grid = _get_best_grid(image, side)
partition = _partition(image, grid)
crops = [image.crop(p) for p in partition]
if len(crops) > 1:
crops.insert(0, image)
pixel_values = torch.cat([_preprocess(crop, side) for crop in crops], dim=0)
image_placeholders = self.construct_image_placeholders(grid)
return pixel_values, image_placeholders
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
def post_process_image_text_to_text(self, generated_outputs):
"""
Post-process the output of the model to decode the text.
Args:
generated_outputs (`torch.Tensor` or `np.ndarray`):
The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
or `(sequence_length,)`.
Returns:
`List[str]`: The decoded text.
"""
return self.tokenizer.batch_decode(
generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
names_from_processor = list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
return names_from_processor + ["second_per_grid_ts"]
__all__ = ["OvisProcessor"]