File size: 17,129 Bytes
e721eb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# coding=utf-8
# Copyright 2025 The Qwen Team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
from typing import List, Union

import PIL
import torch
from transformers import BatchFeature
from transformers.image_utils import ImageInput
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
from transformers.tokenization_utils_base import TextInput, PreTokenizedInput
IGNORE_ID = -100
IMAGE_TOKEN_ID = -200
IMAGE_TOKEN = "<image>"
IMAGE_ATOM_ID = -300
IMAGE_INDICATOR_IDS = [-301, -302, -303, -304, -305]

class OvisProcessorKwargs(ProcessingKwargs, total=False):
    _defaults = {
        "text_kwargs": {
            "padding": False,
        },
        "images_kwargs": {
            'max_partition':9,
            'covering_threshold':0.9,
            'convert_to_rgb':True,
        'return_tensors':'pt'},
    }


class OvisProcessor(ProcessorMixin):
    r"""
    Constructs a Ovis processor which wraps a Ovis image processor and a Qwen2 tokenizer into a single processor.
    [`OvisProcessor`] offers all the functionalities of [`Qwen2VLImageProcessor`] and [`Qwen2TokenizerFast`]. See the
    [`~OvisProcessor.__call__`] and [`~OvisProcessor.decode`] for more information.
    Args:
        image_processor ([`Qwen2VLImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`Qwen2TokenizerFast`], *optional*):
            The tokenizer is a required input.
        chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
            in a chat into a tokenizable string.
    """

    attributes = ["image_processor", "tokenizer"]
    valid_kwargs = ["chat_template"]

    image_processor_class = "AutoImageProcessor"
    tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")

    def __init__(self, image_processor=None, tokenizer=None, chat_template=None, **kwargs):
        self.image_token = "<|image_pad|>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token
        self.video_token = "<|video_pad|>" if not hasattr(tokenizer, "video_token") else tokenizer.video_token
        super().__init__(image_processor, tokenizer, chat_template=chat_template)

    def __call__(
        self,
        images: ImageInput = None,
        text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
        **kwargs: Unpack[OvisProcessorKwargs],
    ) -> BatchFeature:
        """
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to
        Qwen2VLImageProcessor's [`~Qwen2VLImageProcessor.__call__`] if `vision_infos` is not `None`.

            Args:
                images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                    The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                    tensor. Both channels-first and channels-last formats are supported.
                text (`str`, `List[str]`, `List[List[str]]`):
                    The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                    (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                    `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
                videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
                    The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
                    tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported.
                return_tensors (`str` or [`~utils.TensorType`], *optional*):
                    If set, will return tensors of a particular framework. Acceptable values are:
                    - `'tf'`: Return TensorFlow `tf.constant` objects.
                    - `'pt'`: Return PyTorch `torch.Tensor` objects.
                    - `'np'`: Return NumPy `np.ndarray` objects.
                    - `'jax'`: Return JAX `jnp.ndarray` objects.

            Returns:
                [`BatchFeature`]: A [`BatchFeature`] with the following fields:

                - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
                - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
                  `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
                  `None`).
                - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
                - **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`.
                - **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
                - **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`.
                - **second_per_grid_ts** -- List of video seconds per time grid. Returned when `videos` is not `None`.
        """
        output_kwargs = self._merge_kwargs(
            OvisProcessorKwargs,
            tokenizer_init_kwargs=self.tokenizer.init_kwargs,
            **kwargs,
        )

        # Process all images first
        image_features = {}
        if images is not None:
            processed_images = []
            image_placeholders_list = []

            # Process each image
            for image in images if isinstance(images, list) else [images]:
                pixel_values, image_placeholders = self.preprocess_image(
                    image=image, **output_kwargs["images_kwargs"]
                )
                processed_images.append(pixel_values)
                image_placeholders_list.append(image_placeholders)

            # assign all processed images
            if processed_images:
                image_features["image_placeholders"] = image_placeholders_list

        # Process text input
        if text is not None:

            if not isinstance(text, list):
                text = [text]

            all_input_ids = torch.tensor([], dtype=torch.long)
            all_attention_mask = torch.tensor([], dtype=torch.long)

            for idx, txt in enumerate(text):
                # Split text by IMAGE_TOKEN
                text_parts = txt.split(IMAGE_TOKEN)

                # Tokenize each text part
                full_input_ids= torch.tensor([], dtype=torch.long)
                full_attention_mask = torch.tensor([], dtype=torch.long)

                for i, part in enumerate(text_parts):
                    # Process text part
                    text_tokens = self.tokenizer(part, **output_kwargs["text_kwargs"])
                    full_input_ids=torch.cat([full_input_ids,torch.tensor(text_tokens.input_ids, dtype=full_input_ids.dtype, device=full_input_ids.device)], dim=-1)
                    full_attention_mask=torch.cat([full_attention_mask,torch.tensor(text_tokens.attention_mask)], dim=-1)

                    # Add image placeholder tokens after each text part (except the last one)
                    if i < len(text_parts) - 1 and "image_placeholders" in image_features:
                        if idx < len(image_features["image_placeholders"]):
                            placeholder_ids = image_features["image_placeholders"][idx]
                            full_input_ids=torch.cat([full_input_ids,torch.tensor(placeholder_ids).unsqueeze(0)], dim=-1)
                            full_attention_mask=torch.cat([full_attention_mask,torch.tensor([1] * len(placeholder_ids)).unsqueeze(0)], dim=-1)
                last_bigger_tensor_dim = all_input_ids.shape[-1]
                if full_input_ids.shape[-1] > last_bigger_tensor_dim > 0: # we skip the first
                    # we pad the all_input_ids with pad tokens and we adjust the attn mask
                    all_input_ids = torch.cat([all_input_ids,
                                               torch.full((1, full_input_ids.shape[-1] - last_bigger_tensor_dim),
                                                          self.tokenizer.pad_token_id, dtype=torch.long)], dim=-1)
                    all_attention_mask = torch.cat([all_attention_mask,
                                                    torch.zeros((1, full_input_ids.shape[-1] - last_bigger_tensor_dim),
                                                                dtype=torch.long)], dim=-1)
                    last_bigger_tensor_dim = full_input_ids.shape[-1]
                all_input_ids = torch.cat([all_input_ids, full_input_ids], dim=0)
                all_attention_mask = torch.cat([ all_attention_mask, full_attention_mask], dim=0)

            # Create the output with text features
            output = BatchFeature(
                data={
                    "input_ids": all_input_ids,
                    "attention_mask": all_attention_mask,
                }
            )

            # Add image features if present
            if image_features:
                output["pixel_values"] = processed_images

            return output


        # If only images were provided
        return BatchFeature(data=image_features)



    def get_image_size(self):
        height = self.image_processor.crop_size["height"]
        width = self.image_processor.crop_size["width"]
        return height, width

    @staticmethod
    def construct_image_placeholders(grid):
        image_placeholders = [IMAGE_INDICATOR_IDS[0], IMAGE_ATOM_ID, IMAGE_INDICATOR_IDS[1]]
        if grid[0] * grid[1] > 1:
            for r in range(grid[0]):
                for c in range(grid[1]):
                    image_placeholders.append(IMAGE_ATOM_ID)
                    if c < grid[1] - 1:
                        image_placeholders.append(IMAGE_INDICATOR_IDS[2])
                if r < grid[0] - 1:
                    image_placeholders.append(IMAGE_INDICATOR_IDS[3])
        image_placeholders.append(IMAGE_INDICATOR_IDS[4])
        return image_placeholders
    def preprocess_image(self, image: PIL.Image.Image, max_partition, covering_threshold, convert_to_rgb, return_tensors):
        def _preprocess(img: PIL.Image.Image, side):
            # first resize and preprocess
            w, h = img.size
            if w == h:
                new_width = new_height = side
            elif w > h:
                new_width = side
                new_height = int(h / w * new_width)
            else:
                new_height = side
                new_width = int(w / h * new_height)
            new_size = dict(height=new_height, width=new_width)
            pixel_values = self.image_processor.preprocess(img, size=new_size, return_tensors=return_tensors)['pixel_values']

            # then pad to square
            square_values = torch.zeros([1, 3, side, side], dtype=pixel_values.dtype, device=pixel_values.device)
            new_height, new_width = pixel_values.shape[2:]
            if new_height == new_width:
                square_values[:, :, :, :] = pixel_values
            elif new_height > new_width:
                from_index = (side - new_width) // 2
                square_values[:, :, :, from_index:from_index + new_width] = pixel_values
            else:
                from_index = (side - new_height) // 2
                square_values[:, :, from_index:from_index + new_height, :] = pixel_values

            return square_values

        def _partition(img, grid):
            w, h = img.size
            row_height = h // grid[0]
            col_width = w // grid[1]

            partition = []
            for row in range(grid[0]):
                for col in range(grid[1]):
                    left = col * col_width
                    upper = row * row_height
                    right = w if col == grid[1] - 1 else (col + 1) * col_width
                    lower = h if row == grid[0] - 1 else (row + 1) * row_height
                    partition.append((left, upper, right, lower))

            return partition

        def _covering_area(left, upper, right, lower, side):
            w = right - left
            h = lower - upper
            w, h = max(w, h), min(w, h)
            if w > side:
                h = h / w * side
                w = side
            return w * h

        def _get_best_grid(img, side):
            img_area = img.size[0] * img.size[1]

            candidate_grids = []
            for i in range(1, max_partition + 1):
                for j in range(1, max_partition + 1):
                    if i * j <= max_partition:
                        candidate_grids.append((i, j))

            all_grids = []
            good_grids = []
            for grid in candidate_grids:
                partition = _partition(img, grid)
                covering_ratio = sum([_covering_area(*p, side) for p in partition]) / img_area
                assert covering_ratio <= 1.0
                all_grids.append((grid, covering_ratio))
                if covering_ratio > covering_threshold:
                    good_grids.append((grid, covering_ratio))

            if len(good_grids) > 0:
                # pick the good partition with minimum #sub_images and break the tie using covering_ratio
                return sorted(good_grids, key=lambda x: (x[0][0] * x[0][1], -x[1]))[0][0]
            else:
                # pick the partition with maximum covering_ratio and break the tie using #sub_images
                return sorted(all_grids, key=lambda x: (-x[1], x[0][0] * x[0][1]))[0][0]

        if convert_to_rgb and image.mode != 'RGB':
            image = image.convert('RGB')


        sides = self.get_image_size()
        if sides[0] != sides[1]:
            raise ValueError('get_image_size() returns non-square size')
        side = sides[0]
        grid = _get_best_grid(image, side)
        partition = _partition(image, grid)
        crops = [image.crop(p) for p in partition]
        if len(crops) > 1:
            crops.insert(0, image)
        pixel_values = torch.cat([_preprocess(crop, side) for crop in crops], dim=0)
        image_placeholders = self.construct_image_placeholders(grid)
        return pixel_values, image_placeholders

    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        """
        return self.tokenizer.batch_decode(*args, **kwargs)

    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        """
        return self.tokenizer.decode(*args, **kwargs)

    def post_process_image_text_to_text(self, generated_outputs):
        """
        Post-process the output of the model to decode the text.

        Args:
            generated_outputs (`torch.Tensor` or `np.ndarray`):
                The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
                or `(sequence_length,)`.

        Returns:
            `List[str]`: The decoded text.
        """
        return self.tokenizer.batch_decode(
            generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False
        )

    @property
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        image_processor_input_names = self.image_processor.model_input_names
        names_from_processor = list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
        return names_from_processor + ["second_per_grid_ts"]


__all__ = ["OvisProcessor"]