# coding=utf-8 # Copyright 2025 The Qwen Team and The HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import defaultdict from typing import List, Union import PIL import torch from transformers import BatchFeature from transformers.image_utils import ImageInput from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack from transformers.tokenization_utils_base import TextInput, PreTokenizedInput IGNORE_ID = -100 IMAGE_TOKEN_ID = -200 IMAGE_TOKEN = "" IMAGE_ATOM_ID = -300 IMAGE_INDICATOR_IDS = [-301, -302, -303, -304, -305] class OvisProcessorKwargs(ProcessingKwargs, total=False): _defaults = { "text_kwargs": { "padding": False, }, "images_kwargs": { 'max_partition':9, 'covering_threshold':0.9, 'convert_to_rgb':True, 'return_tensors':'pt'}, } class OvisProcessor(ProcessorMixin): r""" Constructs a Ovis processor which wraps a Ovis image processor and a Qwen2 tokenizer into a single processor. [`OvisProcessor`] offers all the functionalities of [`Qwen2VLImageProcessor`] and [`Qwen2TokenizerFast`]. See the [`~OvisProcessor.__call__`] and [`~OvisProcessor.decode`] for more information. Args: image_processor ([`Qwen2VLImageProcessor`], *optional*): The image processor is a required input. tokenizer ([`Qwen2TokenizerFast`], *optional*): The tokenizer is a required input. chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string. """ attributes = ["image_processor", "tokenizer"] valid_kwargs = ["chat_template"] image_processor_class = "AutoImageProcessor" tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast") def __init__(self, image_processor=None, tokenizer=None, chat_template=None, **kwargs): self.image_token = "<|image_pad|>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token self.video_token = "<|video_pad|>" if not hasattr(tokenizer, "video_token") else tokenizer.video_token super().__init__(image_processor, tokenizer, chat_template=chat_template) def __call__( self, images: ImageInput = None, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, **kwargs: Unpack[OvisProcessorKwargs], ) -> BatchFeature: """ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to Qwen2VLImageProcessor's [`~Qwen2VLImageProcessor.__call__`] if `vision_infos` is not `None`. Args: images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. Both channels-first and channels-last formats are supported. text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. - **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`. - **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`. - **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`. - **second_per_grid_ts** -- List of video seconds per time grid. Returned when `videos` is not `None`. """ output_kwargs = self._merge_kwargs( OvisProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) # Process all images first image_features = {} if images is not None: processed_images = [] image_placeholders_list = [] # Process each image for image in images if isinstance(images, list) else [images]: pixel_values, image_placeholders = self.preprocess_image( image=image, **output_kwargs["images_kwargs"] ) processed_images.append(pixel_values) image_placeholders_list.append(image_placeholders) # assign all processed images if processed_images: image_features["image_placeholders"] = image_placeholders_list # Process text input if text is not None: if not isinstance(text, list): text = [text] all_input_ids = torch.tensor([], dtype=torch.long) all_attention_mask = torch.tensor([], dtype=torch.long) for idx, txt in enumerate(text): # Split text by IMAGE_TOKEN text_parts = txt.split(IMAGE_TOKEN) # Tokenize each text part full_input_ids= torch.tensor([], dtype=torch.long) full_attention_mask = torch.tensor([], dtype=torch.long) for i, part in enumerate(text_parts): # Process text part text_tokens = self.tokenizer(part, **output_kwargs["text_kwargs"]) full_input_ids=torch.cat([full_input_ids,torch.tensor(text_tokens.input_ids, dtype=full_input_ids.dtype, device=full_input_ids.device)], dim=-1) full_attention_mask=torch.cat([full_attention_mask,torch.tensor(text_tokens.attention_mask)], dim=-1) # Add image placeholder tokens after each text part (except the last one) if i < len(text_parts) - 1 and "image_placeholders" in image_features: if idx < len(image_features["image_placeholders"]): placeholder_ids = image_features["image_placeholders"][idx] full_input_ids=torch.cat([full_input_ids,torch.tensor(placeholder_ids).unsqueeze(0)], dim=-1) full_attention_mask=torch.cat([full_attention_mask,torch.tensor([1] * len(placeholder_ids)).unsqueeze(0)], dim=-1) last_bigger_tensor_dim = all_input_ids.shape[-1] if full_input_ids.shape[-1] > last_bigger_tensor_dim > 0: # we skip the first # we pad the all_input_ids with pad tokens and we adjust the attn mask all_input_ids = torch.cat([all_input_ids, torch.full((1, full_input_ids.shape[-1] - last_bigger_tensor_dim), self.tokenizer.pad_token_id, dtype=torch.long)], dim=-1) all_attention_mask = torch.cat([all_attention_mask, torch.zeros((1, full_input_ids.shape[-1] - last_bigger_tensor_dim), dtype=torch.long)], dim=-1) last_bigger_tensor_dim = full_input_ids.shape[-1] all_input_ids = torch.cat([all_input_ids, full_input_ids], dim=0) all_attention_mask = torch.cat([ all_attention_mask, full_attention_mask], dim=0) # Create the output with text features output = BatchFeature( data={ "input_ids": all_input_ids, "attention_mask": all_attention_mask, } ) # Add image features if present if image_features: output["pixel_values"] = processed_images return output # If only images were provided return BatchFeature(data=image_features) def get_image_size(self): height = self.image_processor.crop_size["height"] width = self.image_processor.crop_size["width"] return height, width @staticmethod def construct_image_placeholders(grid): image_placeholders = [IMAGE_INDICATOR_IDS[0], IMAGE_ATOM_ID, IMAGE_INDICATOR_IDS[1]] if grid[0] * grid[1] > 1: for r in range(grid[0]): for c in range(grid[1]): image_placeholders.append(IMAGE_ATOM_ID) if c < grid[1] - 1: image_placeholders.append(IMAGE_INDICATOR_IDS[2]) if r < grid[0] - 1: image_placeholders.append(IMAGE_INDICATOR_IDS[3]) image_placeholders.append(IMAGE_INDICATOR_IDS[4]) return image_placeholders def preprocess_image(self, image: PIL.Image.Image, max_partition, covering_threshold, convert_to_rgb, return_tensors): def _preprocess(img: PIL.Image.Image, side): # first resize and preprocess w, h = img.size if w == h: new_width = new_height = side elif w > h: new_width = side new_height = int(h / w * new_width) else: new_height = side new_width = int(w / h * new_height) new_size = dict(height=new_height, width=new_width) pixel_values = self.image_processor.preprocess(img, size=new_size, return_tensors=return_tensors)['pixel_values'] # then pad to square square_values = torch.zeros([1, 3, side, side], dtype=pixel_values.dtype, device=pixel_values.device) new_height, new_width = pixel_values.shape[2:] if new_height == new_width: square_values[:, :, :, :] = pixel_values elif new_height > new_width: from_index = (side - new_width) // 2 square_values[:, :, :, from_index:from_index + new_width] = pixel_values else: from_index = (side - new_height) // 2 square_values[:, :, from_index:from_index + new_height, :] = pixel_values return square_values def _partition(img, grid): w, h = img.size row_height = h // grid[0] col_width = w // grid[1] partition = [] for row in range(grid[0]): for col in range(grid[1]): left = col * col_width upper = row * row_height right = w if col == grid[1] - 1 else (col + 1) * col_width lower = h if row == grid[0] - 1 else (row + 1) * row_height partition.append((left, upper, right, lower)) return partition def _covering_area(left, upper, right, lower, side): w = right - left h = lower - upper w, h = max(w, h), min(w, h) if w > side: h = h / w * side w = side return w * h def _get_best_grid(img, side): img_area = img.size[0] * img.size[1] candidate_grids = [] for i in range(1, max_partition + 1): for j in range(1, max_partition + 1): if i * j <= max_partition: candidate_grids.append((i, j)) all_grids = [] good_grids = [] for grid in candidate_grids: partition = _partition(img, grid) covering_ratio = sum([_covering_area(*p, side) for p in partition]) / img_area assert covering_ratio <= 1.0 all_grids.append((grid, covering_ratio)) if covering_ratio > covering_threshold: good_grids.append((grid, covering_ratio)) if len(good_grids) > 0: # pick the good partition with minimum #sub_images and break the tie using covering_ratio return sorted(good_grids, key=lambda x: (x[0][0] * x[0][1], -x[1]))[0][0] else: # pick the partition with maximum covering_ratio and break the tie using #sub_images return sorted(all_grids, key=lambda x: (-x[1], x[0][0] * x[0][1]))[0][0] if convert_to_rgb and image.mode != 'RGB': image = image.convert('RGB') sides = self.get_image_size() if sides[0] != sides[1]: raise ValueError('get_image_size() returns non-square size') side = sides[0] grid = _get_best_grid(image, side) partition = _partition(image, grid) crops = [image.crop(p) for p in partition] if len(crops) > 1: crops.insert(0, image) pixel_values = torch.cat([_preprocess(crop, side) for crop in crops], dim=0) image_placeholders = self.construct_image_placeholders(grid) return pixel_values, image_placeholders def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) def post_process_image_text_to_text(self, generated_outputs): """ Post-process the output of the model to decode the text. Args: generated_outputs (`torch.Tensor` or `np.ndarray`): The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)` or `(sequence_length,)`. Returns: `List[str]`: The decoded text. """ return self.tokenizer.batch_decode( generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False ) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names names_from_processor = list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) return names_from_processor + ["second_per_grid_ts"] __all__ = ["OvisProcessor"]