hamedrahimi commited on
Commit
2f91003
·
verified ·
1 Parent(s): 246f1e4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -6
README.md CHANGED
@@ -36,15 +36,18 @@ This model allows for **customization of open-weight VLMs** to produce **persona
36
  ## Model Usage
37
  ### Example Code:
38
  ```python
 
 
 
39
  from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration
40
  import torch
41
 
42
- model_id = "ACIDE/User-VLM-10B-Instruct"
43
  processor = PaliGemmaProcessor.from_pretrained(model_id)
44
  model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16).to(device)
45
 
46
- def generate_response(question, image, model, processor):
47
- prompt = f"<image> <|im_start|>USER: {question}<|im_end|> ASSISTANT:"
48
  model_inputs = processor(text=prompt, images=image, return_tensors="pt").to(torch.bfloat16).to(model.device)
49
  input_len = model_inputs["input_ids"].shape[-1]
50
 
@@ -58,9 +61,9 @@ def generate_response(question, image, model, processor):
58
  from transformers.image_utils import load_image
59
  url = "https://media.istockphoto.com/id/1282695693/photo/little-boy-sitting-on-chair-at-the-table.jpg"
60
  image = load_image(url)
61
- question = "Does Santa Claus exist?"
62
- answer = generate_response(question, image, model, processor)
63
- print(answer)
64
  ```
65
 
66
  ## Ethical Considerations & Limitations
 
36
  ## Model Usage
37
  ### Example Code:
38
  ```python
39
+
40
+ # The base model is not instruction-tuned and therefore is not suitable for use in a conversational mode.
41
+
42
  from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration
43
  import torch
44
 
45
+ model_id = "ACIDE/User-VLM-10B-base"
46
  processor = PaliGemmaProcessor.from_pretrained(model_id)
47
  model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16).to(device)
48
 
49
+ def generate_description(image, model, processor):
50
+ prompt = "<image> "
51
  model_inputs = processor(text=prompt, images=image, return_tensors="pt").to(torch.bfloat16).to(model.device)
52
  input_len = model_inputs["input_ids"].shape[-1]
53
 
 
61
  from transformers.image_utils import load_image
62
  url = "https://media.istockphoto.com/id/1282695693/photo/little-boy-sitting-on-chair-at-the-table.jpg"
63
  image = load_image(url)
64
+
65
+ description = generate_description(image, model, processor)
66
+ print(description)
67
  ```
68
 
69
  ## Ethical Considerations & Limitations