hamedrahimi commited on
Commit
246f1e4
·
verified ·
1 Parent(s): 3f67c90

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -192
README.md CHANGED
@@ -1,199 +1,91 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
4
  ---
 
 
5
 
6
- # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
  ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - robotics
5
+ license: mit
6
+ datasets:
7
+ - ACIDE/user-vlm-pt
8
+ language:
9
+ - en
10
+ base_model:
11
+ - google/paligemma2-10b-pt-896
12
+ pipeline_tag: image-text-to-text
13
  ---
14
+ # User-VLM 360°
15
+ ![Architecture](result-final.pdf)
16
 
17
+ ## Overview
18
+ **User-VLM 360°** is a series of personalized Vision-Language Models (VLMs) designed for social human-robot interactions. The model introduces **User-aware tuning**, addressing the **semantic gap** that arises from the misalignment between user queries and the observed scene as captured by a robot's camera. Unlike traditional instruction tuning, which introduces latency and reduces performance, **User-VLM 360°** enables **real-time, robust adaptation** in dynamic robotic environments by inherently aligning cross-modal user representations.
19
 
20
+ This model allows for **customization of open-weight VLMs** to produce **personalized responses** based on demographic attributes such as age, gender, emotion, and ethnicity while maintaining ethical and safety considerations.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
  ## Training Details
23
+ **Base Model:** User-VLM 360° is built on **PaliGemma 2**, which consists of a **SigLIP vision encoder** and **Gemma 2 as the language model**.
24
+
25
+ ![Deployment on Pepper](pepper2.pdf)
26
+
27
+ ### Fine-tuning Process:
28
+ 1. **Base Model Tuning:**
29
+ - Tuned the **MLP layer** to provide **user and scene descriptions** over **1 epoch**.
30
+ 2. **Instruction Model Tuning:**
31
+ - Instruction-tuned the **base model** using **personalized, user-specific Q&A datasets**.
32
+ - Used **Sparse Mixture of LoRA Experts (MoLE)** (3 LoRA modules, rank=16, alpha=32, one chosen) and a standalone **LoRA (rank=16, alpha=32)** over **2 epochs**.
33
+ 3. **Bias Mitigation:**
34
+ - Applied **Direct Preference Optimization (DPO)** over **1 epoch** using **LoRA (rank=16, alpha=32)**.
35
+
36
+ ## Model Usage
37
+ ### Example Code:
38
+ ```python
39
+ from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration
40
+ import torch
41
+
42
+ model_id = "ACIDE/User-VLM-10B-Instruct"
43
+ processor = PaliGemmaProcessor.from_pretrained(model_id)
44
+ model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16).to(device)
45
+
46
+ def generate_response(question, image, model, processor):
47
+ prompt = f"<image> <|im_start|>USER: {question}<|im_end|> ASSISTANT:"
48
+ model_inputs = processor(text=prompt, images=image, return_tensors="pt").to(torch.bfloat16).to(model.device)
49
+ input_len = model_inputs["input_ids"].shape[-1]
50
+
51
+ with torch.inference_mode():
52
+ generation = model.generate(**model_inputs, max_new_tokens=100, do_sample=False)
53
+ generation = generation[0][input_len:]
54
+ decoded = processor.decode(generation, skip_special_tokens=True)
55
+ return decoded
56
+
57
+ # Example usage
58
+ from transformers.image_utils import load_image
59
+ url = "https://media.istockphoto.com/id/1282695693/photo/little-boy-sitting-on-chair-at-the-table.jpg"
60
+ image = load_image(url)
61
+ question = "Does Santa Claus exist?"
62
+ answer = generate_response(question, image, model, processor)
63
+ print(answer)
64
+ ```
65
+
66
+ ## Ethical Considerations & Limitations
67
+ - **Research-Only Use:** This model is intended strictly for **research purposes** and should not be deployed in real-world applications without further ethical validation.
68
+ - **Demographic Personalization:** While the model can adapt responses based on user attributes, **care must be taken to prevent bias and discrimination**.
69
+ - **No Liability:** The authors **do not accept any liability** regarding the use of this model. Responsibility for ethical and appropriate use remains with the users.
70
+
71
+ ## Citation
72
+ If you use this model in your research, please cite the following papers:
73
+ ```bibtex
74
+ @article{rahimi2025user,
75
+ title={User-VLM: LLM Contextualization with Multimodal Pre-trained User Models},
76
+ author={Rahimi, Hamed and Abrini, Mouad and Khoramshahi, Mahdi and Chetouani, Mohamed},
77
+ year={2025}
78
+ }
79
+
80
+ @article{rahimi2025user,
81
+ title={User-VLM 360°: Personalized Vision Language Models with User-aware Tuning for Social Human Robot Interactions},
82
+ author={Rahimi, Hamed and Bhaj, Adil, Abrini, Mouad, Khoramshahi, Mahdi, Ghogho, Mounir, and Chetouani, Mohamed},
83
+ year={2025}
84
+ }
85
+ ```
86
+
87
+ ## License
88
+ This model is licensed under the **MIT License**.
89
+
90
+ ## Contact
91
+ For any questions or issues regarding the model, please open an issue on the repository or contact the maintainers directly.