phone-search-model / README.md
zxcvo's picture
Add new SentenceTransformer model
118e510 verified
|
raw
history blame
22.9 kB
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:63
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: keepitreal/vietnamese-sbert
widget:
- source_sentence: Samsung Galaxy S22 Ultra
sentences:
- Điện thoại camera 108MP
- Điện thoại RAM 12GB
- Điện thoại zoom quang học 10x
- source_sentence: Google Pixel 8 Pro
sentences:
- Điện thoại jack cắm tai nghe 3.5mm
- Điện thoại bộ nhớ trong 256GB
- Điện thoại chụp ảnh đẹp
- source_sentence: Google Pixel 8
sentences:
- Điện thoại màn hình 120Hz
- Điện thoại giá rẻ
- Điện thoại Android mới nhất
- source_sentence: JBL Reflect Flow Pro
sentences:
- iPhone mới nhất
- Điện thoại màn hình cong
- Điện thoại loa Harman Kardon
- source_sentence: Asus ROG Phone 7
sentences:
- Điện thoại bút
- Điện thoại chơi game
- Điện thoại đèn flash kép
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on keepitreal/vietnamese-sbert
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.2857142857142857
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.2857142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5714285714285714
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.09523809523809523
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.05714285714285715
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05714285714285715
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.2857142857142857
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.2857142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5714285714285714
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.25679948860544627
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.1598639455782313
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.17696777071484332
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.42857142857142855
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5714285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7142857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.14285714285714285
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1142857142857143
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07142857142857142
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.42857142857142855
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5714285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7142857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.3358736991627618
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.21564625850340136
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.22075481533609612
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.2857142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5714285714285714
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.0
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.05714285714285715
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05714285714285715
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.0
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.2857142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5714285714285714
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.22155623379830594
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.11564625850340135
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.13073998125841443
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.14285714285714285
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.2857142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.42857142857142855
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.047619047619047616
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.05714285714285715
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.042857142857142864
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.14285714285714285
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.2857142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.42857142857142855
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.18057284162953233
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.10374149659863945
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.11943368484517551
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.14285714285714285
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.2857142857142857
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.2857142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5714285714285714
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.14285714285714285
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.09523809523809523
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.05714285714285715
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05714285714285715
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.14285714285714285
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.2857142857142857
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.2857142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5714285714285714
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.32106066086016677
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.24801587301587302
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2591176744402551
name: Cosine Map@100
---
# SentenceTransformer based on keepitreal/vietnamese-sbert
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [keepitreal/vietnamese-sbert](https://huggingface.co/keepitreal/vietnamese-sbert) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [keepitreal/vietnamese-sbert](https://huggingface.co/keepitreal/vietnamese-sbert) <!-- at revision a9467ef2ef47caa6448edeabfd8e5e5ce0fa2a23 -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("zxcvo/phone-search-model")
# Run inference
sentences = [
'Asus ROG Phone 7',
'Điện thoại chơi game',
'Điện thoại có đèn flash kép',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
|:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|
| cosine_accuracy@1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 |
| cosine_accuracy@3 | 0.2857 | 0.4286 | 0.0 | 0.1429 | 0.2857 |
| cosine_accuracy@5 | 0.2857 | 0.5714 | 0.2857 | 0.2857 | 0.2857 |
| cosine_accuracy@10 | 0.5714 | 0.7143 | 0.5714 | 0.4286 | 0.5714 |
| cosine_precision@1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 |
| cosine_precision@3 | 0.0952 | 0.1429 | 0.0 | 0.0476 | 0.0952 |
| cosine_precision@5 | 0.0571 | 0.1143 | 0.0571 | 0.0571 | 0.0571 |
| cosine_precision@10 | 0.0571 | 0.0714 | 0.0571 | 0.0429 | 0.0571 |
| cosine_recall@1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 |
| cosine_recall@3 | 0.2857 | 0.4286 | 0.0 | 0.1429 | 0.2857 |
| cosine_recall@5 | 0.2857 | 0.5714 | 0.2857 | 0.2857 | 0.2857 |
| cosine_recall@10 | 0.5714 | 0.7143 | 0.5714 | 0.4286 | 0.5714 |
| **cosine_ndcg@10** | **0.2568** | **0.3359** | **0.2216** | **0.1806** | **0.3211** |
| cosine_mrr@10 | 0.1599 | 0.2156 | 0.1156 | 0.1037 | 0.248 |
| cosine_map@100 | 0.177 | 0.2208 | 0.1307 | 0.1194 | 0.2591 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 63 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 63 samples:
| | positive | anchor |
|:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 6.9 tokens</li><li>max: 15 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 7.86 tokens</li><li>max: 12 tokens</li></ul> |
* Samples:
| positive | anchor |
|:-----------------------------------------------------------|:-----------------------------------------|
| <code>Google Pixel 8</code> | <code>Điện thoại Android mới nhất</code> |
| <code>Samsung Galaxy S22 Ultra</code> | <code>Điện thoại có sạc không dây</code> |
| <code>Samsung Galaxy Note 20 Ultra đi kèm bút S Pen</code> | <code>Điện thoại có bút</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `bf16`: True
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:-------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| **1.0** | **1** | **0.3188** | **0.3971** | **0.3073** | **0.1945** | **0.2442** |
| 2.0 | 2 | 0.3209 | 0.3886 | 0.2545 | 0.1838 | 0.3194 |
| 3.0 | 3 | 0.2542 | 0.3359 | 0.2391 | 0.1838 | 0.3211 |
| 4.0 | 4 | 0.2568 | 0.3359 | 0.2216 | 0.1806 | 0.3211 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.11.0
- Sentence Transformers: 3.3.1
- Transformers: 4.41.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->