YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Model summary

  • instruction-tuning on medical data based on LLaMA

data

  • Common
    • alpaca-5.2k
    • unatural-instruct 80k
    • OIG-40M
  • Chinese
    • english/chinese translation data
    • zhihu QA
    • pCLUE
  • Medical Domain:
    • MedDialog-200k
    • Chinese-medical-dialogue-data
    • WebMedQA
  • code
    • alpaca_code-20k

training

Model

  • LLaMA-7B

Hardware

  • 6 x A100 40G using NVLink 4 inter-gpu connects

Software

  • tokenizers==0.12.1
  • sentencepiece==0.1.97
  • transformers==4.28
  • torch==2.0.0+cu117

How to use

import torch
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
from peft import PeftModel

base_model="llma-7b"
LORA_WEIGHTS = "llma-med-alpaca-7b"
LOAD_8BIT = False

tokenizer = LlamaTokenizer.from_pretrained(base_model)

model = LlamaForCausalLM.from_pretrained(
    base_model
    load_in_8bit=LOAD_8BIT,
    torch_dtype=torch.float16,
    device_map="auto",
)
model = PeftModel.from_pretrained(
    model,
    LORA_WEIGHTS,
    torch_dtype=torch.float16,
)

config = {
    "temperature": 0 ,
    "max_new_tokens": 1024,
    "top_p": 0.5
}

prompt = "Translate to English: Je t’aime."
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
outputs = model.generate(input_ids=input_ids, max_new_tokens=config["max_new_tokens"], temperature=config["temperature"])
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
print(decoded[len(prompt):])

Limitations

  • This model may output harmful, biased, toxic, and illusory things, and currently does not undergo RLHF training, so this model is only for research purposes

TODO

  • self-instruct data
  • english medical data
  • code data
  • chinese corpus/medical dialog data

Reference

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.