|
import os |
|
import json |
|
import torch |
|
import torchvision.transforms as transforms |
|
import os.path |
|
import numpy as np |
|
import cv2 |
|
from PIL import Image |
|
from torch.utils.data import Dataset |
|
import random |
|
from .__base_dataset__ import BaseDataset |
|
import pickle |
|
|
|
|
|
class TaskonomyDataset(BaseDataset): |
|
def __init__(self, cfg, phase, **kwargs): |
|
super(TaskonomyDataset, self).__init__( |
|
cfg=cfg, |
|
phase=phase, |
|
**kwargs) |
|
self.metric_scale = cfg.metric_scale |
|
|
|
|
|
def __getitem__(self, idx: int) -> dict: |
|
if self.phase == 'test': |
|
return self.get_data_for_test(idx) |
|
else: |
|
return self.get_data_for_trainval(idx) |
|
|
|
def load_meta_data(self, anno: dict) -> dict: |
|
""" |
|
Load meta data information. |
|
""" |
|
if self.meta_data_root is not None and ('meta_data' in anno or 'meta' in anno): |
|
meta_data_path = os.path.join(self.meta_data_root, anno['meta_data']) if 'meta_data' in anno else os.path.join(self.meta_data_root, anno['meta']) |
|
with open(meta_data_path, 'rb') as f: |
|
meta_data = pickle.load(f) |
|
meta_data.update(anno) |
|
else: |
|
meta_data = anno |
|
u0, v0, fx, fy = meta_data['cam_in'] |
|
meta_data['cam_in'] = [fx, fy, u0, v0] |
|
return meta_data |
|
|
|
def get_data_for_trainval(self, idx: int): |
|
anno = self.annotations['files'][idx] |
|
meta_data = self.load_meta_data(anno) |
|
|
|
data_path = self.load_data_path(meta_data) |
|
data_batch = self.load_batch(meta_data, data_path) |
|
curr_rgb, curr_depth, curr_normal, curr_cam_model = data_batch['curr_rgb'], data_batch['curr_depth'], data_batch['curr_normal'], data_batch['curr_cam_model'] |
|
curr_intrinsic = meta_data['cam_in'] |
|
|
|
ins_planes_path = os.path.join(self.data_root, meta_data['ins_planes']) if ('ins_planes' in meta_data) and (meta_data['ins_planes'] is not None) else None |
|
|
|
ins_planes = self.load_ins_planes(curr_depth, ins_planes_path) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
transform_paras = dict(random_crop_size = self.random_crop_size) |
|
rgbs, depths, intrinsics, cam_models, normals, other_labels, transform_paras = self.img_transforms( |
|
images=[curr_rgb, ], |
|
labels=[curr_depth, ], |
|
intrinsics=[curr_intrinsic,], |
|
cam_models=[curr_cam_model, ], |
|
normals = [curr_normal, ], |
|
other_labels=[ins_planes, ], |
|
transform_paras=transform_paras) |
|
|
|
ins_planes = other_labels[0].int() |
|
|
|
|
|
depth_out = self.normalize_depth(depths[0]) |
|
|
|
inv_depth = self.depth2invdepth(depth_out, torch.zeros_like(depth_out, dtype=torch.bool)) |
|
filename = os.path.basename(meta_data['rgb']) |
|
curr_intrinsic_mat = self.intrinsics_list2mat(intrinsics[0]) |
|
cam_models_stacks = [ |
|
torch.nn.functional.interpolate(cam_models[0][None, :, :, :], size=(cam_models[0].shape[1]//i, cam_models[0].shape[2]//i), mode='bilinear', align_corners=False).squeeze() |
|
for i in [2, 4, 8, 16, 32] |
|
] |
|
pad = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0] |
|
data = dict(input=rgbs[0], |
|
target=depth_out, |
|
intrinsic=curr_intrinsic_mat, |
|
filename=filename, |
|
dataset=self.data_name, |
|
cam_model=cam_models_stacks, |
|
pad=torch.tensor(pad), |
|
data_type=[self.data_type, ], |
|
sem_mask=ins_planes, |
|
normal=normals[0], |
|
inv_depth=inv_depth, |
|
stereo_depth=torch.zeros_like(inv_depth), |
|
scale= transform_paras['label_scale_factor']) |
|
return data |
|
|
|
def get_data_for_test(self, idx: int): |
|
anno = self.annotations['files'][idx] |
|
meta_data = self.load_meta_data(anno) |
|
data_path = self.load_data_path(meta_data) |
|
data_batch = self.load_batch(meta_data, data_path) |
|
|
|
curr_rgb, curr_depth, curr_normal, curr_cam_model = data_batch['curr_rgb'], data_batch['curr_depth'], data_batch['curr_normal'], data_batch['curr_cam_model'] |
|
ori_curr_intrinsic = meta_data['cam_in'] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
transform_paras = dict() |
|
rgbs, depths, intrinsics, cam_models, _, other_labels, transform_paras = self.img_transforms( |
|
images=[curr_rgb,], |
|
labels=[curr_depth, ], |
|
intrinsics=[ori_curr_intrinsic, ], |
|
cam_models=[curr_cam_model, ], |
|
transform_paras=transform_paras) |
|
|
|
depth_out = self.clip_depth(curr_depth) * self.depth_range[1] |
|
inv_depth = self.depth2invdepth(depth_out, np.zeros_like(depth_out, dtype=np.bool)) |
|
|
|
filename = os.path.basename(meta_data['rgb']) |
|
curr_intrinsic_mat = self.intrinsics_list2mat(intrinsics[0]) |
|
|
|
pad = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0] |
|
scale_ratio = transform_paras['label_scale_factor'] if 'label_scale_factor' in transform_paras else 1.0 |
|
cam_models_stacks = [ |
|
torch.nn.functional.interpolate(cam_models[0][None, :, :, :], size=(cam_models[0].shape[1]//i, cam_models[0].shape[2]//i), mode='bilinear', align_corners=False).squeeze() |
|
for i in [2, 4, 8, 16, 32] |
|
] |
|
raw_rgb = torch.from_numpy(curr_rgb) |
|
curr_normal = torch.from_numpy(curr_normal.transpose((2,0,1))) |
|
|
|
data = dict(input=rgbs[0], |
|
target=depth_out, |
|
intrinsic=curr_intrinsic_mat, |
|
filename=filename, |
|
dataset=self.data_name, |
|
cam_model=cam_models_stacks, |
|
pad=pad, |
|
scale=scale_ratio, |
|
raw_rgb=raw_rgb, |
|
sample_id=idx, |
|
data_path=meta_data['rgb'], |
|
inv_depth=inv_depth, |
|
normal=curr_normal, |
|
) |
|
return data |
|
|
|
def load_norm_label(self, norm_path, H, W): |
|
with open(norm_path, 'rb') as f: |
|
normal = Image.open(f) |
|
normal = np.array(normal.convert(normal.mode), dtype=np.uint8) |
|
invalid_mask = np.all(normal == 128, axis=2) |
|
normal = normal.astype(np.float64) / 255.0 * 2 - 1 |
|
normal[invalid_mask, :] = 0 |
|
return normal |
|
|
|
def process_depth(self, depth: np.array, rgb: np.array) -> np.array: |
|
depth[depth>60000] = 0 |
|
depth = depth / self.metric_scale |
|
return depth |
|
|
|
def load_ins_planes(self, depth: np.array, ins_planes_path: str) -> np.array: |
|
if ins_planes_path is not None: |
|
ins_planes = cv2.imread(ins_planes_path, -1) |
|
else: |
|
ins_planes = np.zeros_like(depth) |
|
return ins_planes |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
from mmcv.utils import Config |
|
cfg = Config.fromfile('mono/configs/Apolloscape_DDAD/convnext_base.cascade.1m.sgd.mae.py') |
|
dataset_i = ApolloscapeDataset(cfg['Apolloscape'], 'train', **cfg.data_basic) |
|
print(dataset_i) |
|
|