File size: 8,949 Bytes
3ef1661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os
import json
import torch
import torchvision.transforms as transforms
import os.path
import numpy as np
import cv2
from PIL import Image
from torch.utils.data import Dataset
import random
from .__base_dataset__ import BaseDataset
import pickle


class TaskonomyDataset(BaseDataset):
    def __init__(self, cfg, phase, **kwargs):
        super(TaskonomyDataset, self).__init__(
            cfg=cfg,
            phase=phase,
            **kwargs)
        self.metric_scale = cfg.metric_scale
        #self.cap_range = self.depth_range # in meter
    
    def __getitem__(self, idx: int) -> dict:
        if self.phase == 'test':
            return self.get_data_for_test(idx)
        else:
            return self.get_data_for_trainval(idx)

    def load_meta_data(self, anno: dict) -> dict:
        """
        Load meta data information.
        """
        if self.meta_data_root is not None and ('meta_data' in anno or 'meta' in anno):
            meta_data_path = os.path.join(self.meta_data_root, anno['meta_data']) if 'meta_data' in anno else os.path.join(self.meta_data_root, anno['meta'])
            with open(meta_data_path, 'rb') as f:
                meta_data = pickle.load(f)
            meta_data.update(anno)
        else:
            meta_data = anno
        u0, v0, fx, fy = meta_data['cam_in']
        meta_data['cam_in'] = [fx, fy, u0, v0] # fix data bugs
        return meta_data

    def get_data_for_trainval(self, idx: int):
        anno = self.annotations['files'][idx]
        meta_data = self.load_meta_data(anno)
        
        data_path = self.load_data_path(meta_data)
        data_batch = self.load_batch(meta_data, data_path)
        curr_rgb, curr_depth, curr_normal, curr_cam_model = data_batch['curr_rgb'], data_batch['curr_depth'], data_batch['curr_normal'], data_batch['curr_cam_model']
        curr_intrinsic = meta_data['cam_in']

        ins_planes_path = os.path.join(self.data_root, meta_data['ins_planes']) if ('ins_planes' in meta_data) and (meta_data['ins_planes'] is not None) else None
        # get instance planes
        ins_planes = self.load_ins_planes(curr_depth, ins_planes_path)

        # load data
        # u0, v0, fx, fy = meta_data['cam_in'] # this is 
        # ori_curr_intrinsic = [fx, fy, u0, v0]        
        # curr_rgb, curr_depth = self.load_rgb_depth(curr_rgb_path, curr_depth_path)
        
        # get crop size
        # transform_paras = dict()
        transform_paras = dict(random_crop_size = self.random_crop_size)
        rgbs, depths, intrinsics, cam_models, normals, other_labels, transform_paras = self.img_transforms(
                                                                   images=[curr_rgb, ], 
                                                                   labels=[curr_depth, ], 
                                                                   intrinsics=[curr_intrinsic,], 
                                                                   cam_models=[curr_cam_model, ],
                                                                   normals = [curr_normal, ],
                                                                   other_labels=[ins_planes, ],
                                                                   transform_paras=transform_paras)
        # process instance planes
        ins_planes = other_labels[0].int()
        
        # clip depth map 
        depth_out = self.normalize_depth(depths[0])
        # get inverse depth
        inv_depth = self.depth2invdepth(depth_out, torch.zeros_like(depth_out, dtype=torch.bool))
        filename = os.path.basename(meta_data['rgb'])
        curr_intrinsic_mat = self.intrinsics_list2mat(intrinsics[0])
        cam_models_stacks = [
            torch.nn.functional.interpolate(cam_models[0][None, :, :, :], size=(cam_models[0].shape[1]//i, cam_models[0].shape[2]//i), mode='bilinear', align_corners=False).squeeze()
            for i in [2, 4, 8, 16, 32]
            ]
        pad = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0]        
        data = dict(input=rgbs[0],
                    target=depth_out,
                    intrinsic=curr_intrinsic_mat,
                    filename=filename,
                    dataset=self.data_name,
                    cam_model=cam_models_stacks,
                    pad=torch.tensor(pad),
                    data_type=[self.data_type, ],
                    sem_mask=ins_planes,
                    normal=normals[0],
                    inv_depth=inv_depth,
                    stereo_depth=torch.zeros_like(inv_depth),
                    scale= transform_paras['label_scale_factor'])
        return data

    def get_data_for_test(self, idx: int):
        anno = self.annotations['files'][idx]
        meta_data = self.load_meta_data(anno)
        data_path = self.load_data_path(meta_data)
        data_batch = self.load_batch(meta_data, data_path)

        curr_rgb, curr_depth, curr_normal, curr_cam_model = data_batch['curr_rgb'], data_batch['curr_depth'], data_batch['curr_normal'], data_batch['curr_cam_model']
        ori_curr_intrinsic = meta_data['cam_in']

        # curr_rgb_path = os.path.join(self.data_root, meta_data['rgb'])
        # curr_depth_path = os.path.join(self.depth_root, meta_data['depth'])

        # curr_rgb, curr_depth = self.load_rgb_depth(curr_rgb_path, curr_depth_path)
        # ori_h, ori_w, _ = curr_rgb.shape
        # # create camera model
        # curr_cam_model = self.create_cam_model(curr_rgb.shape[0], curr_rgb.shape[1], ori_curr_intrinsic)
        # load tmpl rgb info
        # tmpl_annos = self.load_tmpl_image_pose(curr_rgb, meta_data)
        # tmpl_rgbs = tmpl_annos['tmpl_rgb_list'] # list of reference rgbs

        transform_paras = dict()
        rgbs, depths, intrinsics, cam_models, _, other_labels, transform_paras = self.img_transforms(
                                                                   images=[curr_rgb,], #  + tmpl_rgbs, 
                                                                   labels=[curr_depth, ], 
                                                                   intrinsics=[ori_curr_intrinsic, ], # * (len(tmpl_rgbs) + 1), 
                                                                   cam_models=[curr_cam_model, ],
                                                                   transform_paras=transform_paras)
        # depth in original size and orignial metric***
        depth_out = self.clip_depth(curr_depth) * self.depth_range[1]
        inv_depth = self.depth2invdepth(depth_out, np.zeros_like(depth_out, dtype=np.bool))

        filename = os.path.basename(meta_data['rgb'])
        curr_intrinsic_mat = self.intrinsics_list2mat(intrinsics[0])

        pad = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0]
        scale_ratio = transform_paras['label_scale_factor'] if 'label_scale_factor' in transform_paras else 1.0
        cam_models_stacks = [
            torch.nn.functional.interpolate(cam_models[0][None, :, :, :], size=(cam_models[0].shape[1]//i, cam_models[0].shape[2]//i), mode='bilinear', align_corners=False).squeeze()
            for i in [2, 4, 8, 16, 32] 
            ]    
        raw_rgb = torch.from_numpy(curr_rgb)
        curr_normal = torch.from_numpy(curr_normal.transpose((2,0,1)))

        data = dict(input=rgbs[0],
                    target=depth_out,
                    intrinsic=curr_intrinsic_mat,
                    filename=filename,
                    dataset=self.data_name,
                    cam_model=cam_models_stacks,
                    pad=pad,
                    scale=scale_ratio,
                    raw_rgb=raw_rgb,
                    sample_id=idx,
                    data_path=meta_data['rgb'],
                    inv_depth=inv_depth,
                    normal=curr_normal,
                    )
        return data
    
    def load_norm_label(self, norm_path, H, W):
        with open(norm_path, 'rb') as f:
            normal = Image.open(f)
            normal = np.array(normal.convert(normal.mode), dtype=np.uint8)
        invalid_mask = np.all(normal == 128, axis=2)
        normal = normal.astype(np.float64) / 255.0 * 2 - 1
        normal[invalid_mask, :] = 0
        return normal
    
    def process_depth(self, depth: np.array, rgb: np.array) -> np.array:
        depth[depth>60000] = 0
        depth = depth / self.metric_scale
        return depth
    
    def load_ins_planes(self, depth: np.array, ins_planes_path: str) -> np.array:
        if ins_planes_path is not None:
            ins_planes = cv2.imread(ins_planes_path, -1)
        else:
            ins_planes = np.zeros_like(depth)
        return ins_planes



if __name__ == '__main__':
    from mmcv.utils import Config 
    cfg = Config.fromfile('mono/configs/Apolloscape_DDAD/convnext_base.cascade.1m.sgd.mae.py')
    dataset_i = ApolloscapeDataset(cfg['Apolloscape'], 'train', **cfg.data_basic)
    print(dataset_i)