metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/conditional-detr-resnet-50
tags:
- generated_from_trainer
model-index:
- name: detr_finetuned_cppe5
results: []
detr_finetuned_cppe5
This model is a fine-tuned version of microsoft/conditional-detr-resnet-50 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.1983
- Map: 0.0
- Map 50: 0.0
- Map 75: 0.0
- Map Small: 0.0
- Map Medium: -1.0
- Map Large: -1.0
- Mar 1: 0.0
- Mar 10: 0.0
- Mar 100: 0.0
- Mar Small: 0.0
- Mar Medium: -1.0
- Mar Large: -1.0
- Map Coverall: 0.0
- Mar 100 Coverall: 0.0
- Map Face Shield: 0.0
- Mar 100 Face Shield: 0.0
- Map Gloves: 0.0
- Mar 100 Gloves: 0.0
- Map Goggles: 0.0
- Mar 100 Goggles: 0.0
- Map Mask: 0.0
- Mar 100 Mask: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Coverall | Mar 100 Coverall | Map Face Shield | Mar 100 Face Shield | Map Gloves | Mar 100 Gloves | Map Goggles | Mar 100 Goggles | Map Mask | Mar 100 Mask |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 213 | 1.8601 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
No log | 2.0 | 426 | 1.7149 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
2.6515 | 3.0 | 639 | 1.6423 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
2.6515 | 4.0 | 852 | 1.5550 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
1.4249 | 5.0 | 1065 | 1.5036 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
1.4249 | 6.0 | 1278 | 1.4294 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
1.4249 | 7.0 | 1491 | 1.3962 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
1.274 | 8.0 | 1704 | 1.4138 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
1.274 | 9.0 | 1917 | 1.3613 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
1.1181 | 10.0 | 2130 | 1.3641 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
1.1181 | 11.0 | 2343 | 1.3022 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
1.0214 | 12.0 | 2556 | 1.2772 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
1.0214 | 13.0 | 2769 | 1.2671 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
1.0214 | 14.0 | 2982 | 1.2379 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.9101 | 15.0 | 3195 | 1.2388 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.9101 | 16.0 | 3408 | 1.2240 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.8119 | 17.0 | 3621 | 1.2378 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.8119 | 18.0 | 3834 | 1.2233 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.7365 | 19.0 | 4047 | 1.2254 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.7365 | 20.0 | 4260 | 1.2334 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.7365 | 21.0 | 4473 | 1.2130 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.6639 | 22.0 | 4686 | 1.2187 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.6639 | 23.0 | 4899 | 1.2093 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.6065 | 24.0 | 5112 | 1.1955 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.6065 | 25.0 | 5325 | 1.1984 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.5682 | 26.0 | 5538 | 1.1981 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.5682 | 27.0 | 5751 | 1.1978 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.5682 | 28.0 | 5964 | 1.1991 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.5442 | 29.0 | 6177 | 1.1989 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.5442 | 30.0 | 6390 | 1.1983 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.2.2
- Datasets 3.0.2
- Tokenizers 0.20.1