all-MiniLM-L6-v5-pair_score

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'siamy wrap',
    'siamy',
    'hair revival',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • learning_rate: 2e-05
  • num_train_epochs: 2
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss loss
0.0070 100 16.865 -
0.0140 200 16.1556 -
0.0210 300 14.8008 -
0.0280 400 12.4025 -
0.0350 500 9.7465 -
0.0420 600 8.448 -
0.0489 700 8.1951 -
0.0559 800 8.1093 -
0.0629 900 8.0567 -
0.0699 1000 8.0401 -
0.0769 1100 7.9491 -
0.0839 1200 7.9494 -
0.0909 1300 7.9386 -
0.0979 1400 7.9033 -
0.1049 1500 7.9055 -
0.1119 1600 7.9203 -
0.1189 1700 7.8381 -
0.1259 1800 7.8679 -
0.1328 1900 7.8686 -
0.1398 2000 7.8252 -
0.1468 2100 7.856 -
0.1538 2200 7.8301 -
0.1608 2300 7.8595 -
0.1678 2400 7.8138 -
0.1748 2500 7.812 -
0.1818 2600 7.8261 -
0.1888 2700 7.7988 -
0.1958 2800 7.7965 -
0.2028 2900 7.783 -
0.2098 3000 7.7752 -
0.2168 3100 7.7715 -
0.2237 3200 7.7903 -
0.2307 3300 7.7656 -
0.2377 3400 7.749 -
0.2447 3500 7.7662 -
0.2517 3600 7.7492 -
0.2587 3700 7.737 -
0.2657 3800 7.7232 -
0.2727 3900 7.7616 -
0.2797 4000 7.7391 -
0.2867 4100 7.7552 -
0.2937 4200 7.7273 -
0.3007 4300 7.7216 -
0.3076 4400 7.7371 -
0.3146 4500 7.7426 -
0.3216 4600 7.7406 -
0.3286 4700 7.712 -
0.3356 4800 7.7466 -
0.3426 4900 7.7058 -
0.3496 5000 7.7139 7.6896
0.3566 5100 7.7457 -
0.3636 5200 7.7172 -
0.3706 5300 7.739 -
0.3776 5400 7.7259 -
0.3846 5500 7.6977 -
0.3916 5600 7.7237 -
0.3985 5700 7.7118 -
0.4055 5800 7.7099 -
0.4125 5900 7.7142 -
0.4195 6000 7.6885 -
0.4265 6100 7.6799 -
0.4335 6200 7.7039 -
0.4405 6300 7.6825 -
0.4475 6400 7.6846 -
0.4545 6500 7.7078 -
0.4615 6600 7.6945 -
0.4685 6700 7.7017 -
0.4755 6800 7.6781 -
0.4825 6900 7.6885 -
0.4894 7000 7.7426 -
0.4964 7100 7.6809 -
0.5034 7200 7.6977 -
0.5104 7300 7.6964 -
0.5174 7400 7.6834 -
0.5244 7500 7.6593 -
0.5314 7600 7.6745 -
0.5384 7700 7.6587 -
0.5454 7800 7.6389 -
0.5524 7900 7.6298 -
0.5594 8000 7.6693 -
0.5664 8100 7.6454 -
0.5733 8200 7.6491 -
0.5803 8300 7.661 -
0.5873 8400 7.6525 -
0.5943 8500 7.6669 -
0.6013 8600 7.6379 -
0.6083 8700 7.6706 -
0.6153 8800 7.6487 -
0.6223 8900 7.6607 -
0.6293 9000 7.6334 -
0.6363 9100 7.6891 -
0.6433 9200 7.734 -
0.6503 9300 7.6283 -
0.6573 9400 7.6461 -
0.6642 9500 7.623 -
0.6712 9600 7.6251 -
0.6782 9700 7.6663 -
0.6852 9800 7.6376 -
0.6922 9900 7.6834 -
0.6992 10000 7.6851 7.6099
0.7062 10100 7.6034 -
0.7132 10200 7.6512 -
0.7202 10300 7.6413 -
0.7272 10400 7.6083 -
0.7342 10500 7.6475 -
0.7412 10600 7.61 -
0.7481 10700 7.6404 -
0.7551 10800 7.6308 -
0.7621 10900 7.638 -
0.7691 11000 7.5954 -
0.7761 11100 7.6037 -
0.7831 11200 7.6405 -
0.7901 11300 7.6396 -
0.7971 11400 7.5898 -
0.8041 11500 7.644 -
0.8111 11600 7.639 -
0.8181 11700 7.6146 -
0.8251 11800 7.6076 -
0.8321 11900 7.5997 -
0.8390 12000 7.6196 -
0.8460 12100 7.6139 -
0.8530 12200 7.6335 -
0.8600 12300 7.6057 -
0.8670 12400 7.5759 -
0.8740 12500 7.6044 -
0.8810 12600 7.589 -
0.8880 12700 7.5871 -
0.8950 12800 7.6161 -
0.9020 12900 7.5797 -
0.9090 13000 7.6202 -
0.9160 13100 7.6116 -
0.9229 13200 7.6253 -
0.9299 13300 7.5891 -
0.9369 13400 7.5856 -
0.9439 13500 7.5824 -
0.9509 13600 7.6288 -
0.9579 13700 7.5653 -
0.9649 13800 7.6073 -
0.9719 13900 7.5958 -
0.9789 14000 7.599 -
0.9859 14100 7.5982 -
0.9929 14200 7.5634 -
0.9999 14300 7.5923 -
1.0069 14400 7.6072 -
1.0138 14500 7.5589 -
1.0208 14600 7.6 -
1.0278 14700 7.5464 -
1.0348 14800 7.5824 -
1.0418 14900 7.5528 -
1.0488 15000 7.568 7.5618
1.0558 15100 7.559 -
1.0628 15200 7.5555 -
1.0698 15300 7.552 -
1.0768 15400 7.5851 -
1.0838 15500 7.5256 -
1.0908 15600 7.5683 -
1.0977 15700 7.5909 -
1.1047 15800 7.5655 -
1.1117 15900 7.5476 -
1.1187 16000 7.5721 -
1.1257 16100 7.5593 -
1.1327 16200 7.5783 -
1.1397 16300 7.5905 -
1.1467 16400 7.542 -
1.1537 16500 7.5794 -
1.1607 16600 7.5669 -
1.1677 16700 7.5738 -
1.1747 16800 7.5431 -
1.1817 16900 7.5401 -
1.1886 17000 7.5629 -
1.1956 17100 7.5534 -
1.2026 17200 7.571 -
1.2096 17300 7.5387 -
1.2166 17400 7.5596 -
1.2236 17500 7.5427 -
1.2306 17600 7.5305 -
1.2376 17700 7.556 -
1.2446 17800 7.5442 -
1.2516 17900 7.5635 -
1.2586 18000 7.5675 -
1.2656 18100 7.5412 -
1.2725 18200 7.5148 -
1.2795 18300 7.546 -
1.2865 18400 7.5608 -
1.2935 18500 7.5269 -
1.3005 18600 7.5614 -
1.3075 18700 7.5276 -
1.3145 18800 7.5586 -
1.3215 18900 7.5783 -
1.3285 19000 7.5312 -
1.3355 19100 7.536 -
1.3425 19200 7.5497 -
1.3495 19300 7.5256 -
1.3565 19400 7.5364 -
1.3634 19500 7.5311 -
1.3704 19600 7.5557 -
1.3774 19700 7.5531 -
1.3844 19800 7.4844 -
1.3914 19900 7.5408 -
1.3984 20000 7.5336 7.5100
1.4054 20100 7.524 -
1.4124 20200 7.5236 -
1.4194 20300 7.5354 -
1.4264 20400 7.5228 -
1.4334 20500 7.5453 -
1.4404 20600 7.5492 -
1.4474 20700 7.5145 -
1.4543 20800 7.5464 -
1.4613 20900 7.5377 -
1.4683 21000 7.5221 -
1.4753 21100 7.5793 -
1.4823 21200 7.5234 -
1.4893 21300 7.4922 -
1.4963 21400 7.5196 -
1.5033 21500 7.5265 -
1.5103 21600 7.5251 -
1.5173 21700 7.4982 -
1.5243 21800 7.5225 -
1.5313 21900 7.5725 -
1.5382 22000 7.5109 -
1.5452 22100 7.5382 -
1.5522 22200 7.5131 -
1.5592 22300 7.5376 -
1.5662 22400 7.5373 -
1.5732 22500 7.5467 -
1.5802 22600 7.519 -
1.5872 22700 7.5137 -
1.5942 22800 7.5511 -
1.6012 22900 7.5376 -
1.6082 23000 7.4912 -
1.6152 23100 7.5331 -
1.6222 23200 7.5223 -
1.6291 23300 7.5342 -
1.6361 23400 7.5171 -
1.6431 23500 7.5225 -
1.6501 23600 7.5273 -
1.6571 23700 7.5179 -
1.6641 23800 7.5508 -
1.6711 23900 7.5064 -
1.6781 24000 7.5008 -
1.6851 24100 7.5046 -
1.6921 24200 7.5295 -
1.6991 24300 7.4983 -
1.7061 24400 7.5451 -
1.7130 24500 7.5092 -
1.7200 24600 7.5434 -
1.7270 24700 7.5296 -
1.7340 24800 7.5036 -
1.7410 24900 7.5133 -
1.7480 25000 7.5222 7.4986
1.7550 25100 7.4928 -
1.7620 25200 7.5338 -
1.7690 25300 7.4937 -
1.7760 25400 7.542 -
1.7830 25500 7.5296 -
1.7900 25600 7.5069 -
1.7970 25700 7.5311 -
1.8039 25800 7.5433 -
1.8109 25900 7.4879 -
1.8179 26000 7.5547 -
1.8249 26100 7.5497 -
1.8319 26200 7.5156 -
1.8389 26300 7.4743 -
1.8459 26400 7.4897 -
1.8529 26500 7.4995 -
1.8599 26600 7.5073 -
1.8669 26700 7.5027 -
1.8739 26800 7.4696 -
1.8809 26900 7.4862 -
1.8878 27000 7.5107 -
1.8948 27100 7.4674 -
1.9018 27200 7.4839 -
1.9088 27300 7.5098 -
1.9158 27400 7.5152 -
1.9228 27500 7.5148 -
1.9298 27600 7.4856 -
1.9368 27700 7.5305 -
1.9438 27800 7.4926 -
1.9508 27900 7.5261 -
1.9578 28000 7.5152 -
1.9648 28100 7.5328 -
1.9718 28200 7.4807 -
1.9787 28300 7.4699 -
1.9857 28400 7.5067 -
1.9927 28500 7.4996 -
1.9997 28600 7.5166 -

Framework Versions

  • Python: 3.8.10
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.2
  • PyTorch: 2.4.1+cu118
  • Accelerate: 1.0.1
  • Datasets: 3.0.1
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

AnglELoss

@misc{li2023angleoptimized,
    title={AnglE-optimized Text Embeddings},
    author={Xianming Li and Jing Li},
    year={2023},
    eprint={2309.12871},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
0
Safetensors
Model size
22.7M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for youssefkhalil320/all-MiniLM-L6-v5-pair_score

Finetuned
(230)
this model