all-MiniLM-L6-v5-pair_score
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'siamy wrap',
'siamy',
'hair revival',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 128per_device_eval_batch_size
: 128learning_rate
: 2e-05num_train_epochs
: 2warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | loss |
---|---|---|---|
0.0070 | 100 | 16.865 | - |
0.0140 | 200 | 16.1556 | - |
0.0210 | 300 | 14.8008 | - |
0.0280 | 400 | 12.4025 | - |
0.0350 | 500 | 9.7465 | - |
0.0420 | 600 | 8.448 | - |
0.0489 | 700 | 8.1951 | - |
0.0559 | 800 | 8.1093 | - |
0.0629 | 900 | 8.0567 | - |
0.0699 | 1000 | 8.0401 | - |
0.0769 | 1100 | 7.9491 | - |
0.0839 | 1200 | 7.9494 | - |
0.0909 | 1300 | 7.9386 | - |
0.0979 | 1400 | 7.9033 | - |
0.1049 | 1500 | 7.9055 | - |
0.1119 | 1600 | 7.9203 | - |
0.1189 | 1700 | 7.8381 | - |
0.1259 | 1800 | 7.8679 | - |
0.1328 | 1900 | 7.8686 | - |
0.1398 | 2000 | 7.8252 | - |
0.1468 | 2100 | 7.856 | - |
0.1538 | 2200 | 7.8301 | - |
0.1608 | 2300 | 7.8595 | - |
0.1678 | 2400 | 7.8138 | - |
0.1748 | 2500 | 7.812 | - |
0.1818 | 2600 | 7.8261 | - |
0.1888 | 2700 | 7.7988 | - |
0.1958 | 2800 | 7.7965 | - |
0.2028 | 2900 | 7.783 | - |
0.2098 | 3000 | 7.7752 | - |
0.2168 | 3100 | 7.7715 | - |
0.2237 | 3200 | 7.7903 | - |
0.2307 | 3300 | 7.7656 | - |
0.2377 | 3400 | 7.749 | - |
0.2447 | 3500 | 7.7662 | - |
0.2517 | 3600 | 7.7492 | - |
0.2587 | 3700 | 7.737 | - |
0.2657 | 3800 | 7.7232 | - |
0.2727 | 3900 | 7.7616 | - |
0.2797 | 4000 | 7.7391 | - |
0.2867 | 4100 | 7.7552 | - |
0.2937 | 4200 | 7.7273 | - |
0.3007 | 4300 | 7.7216 | - |
0.3076 | 4400 | 7.7371 | - |
0.3146 | 4500 | 7.7426 | - |
0.3216 | 4600 | 7.7406 | - |
0.3286 | 4700 | 7.712 | - |
0.3356 | 4800 | 7.7466 | - |
0.3426 | 4900 | 7.7058 | - |
0.3496 | 5000 | 7.7139 | 7.6896 |
0.3566 | 5100 | 7.7457 | - |
0.3636 | 5200 | 7.7172 | - |
0.3706 | 5300 | 7.739 | - |
0.3776 | 5400 | 7.7259 | - |
0.3846 | 5500 | 7.6977 | - |
0.3916 | 5600 | 7.7237 | - |
0.3985 | 5700 | 7.7118 | - |
0.4055 | 5800 | 7.7099 | - |
0.4125 | 5900 | 7.7142 | - |
0.4195 | 6000 | 7.6885 | - |
0.4265 | 6100 | 7.6799 | - |
0.4335 | 6200 | 7.7039 | - |
0.4405 | 6300 | 7.6825 | - |
0.4475 | 6400 | 7.6846 | - |
0.4545 | 6500 | 7.7078 | - |
0.4615 | 6600 | 7.6945 | - |
0.4685 | 6700 | 7.7017 | - |
0.4755 | 6800 | 7.6781 | - |
0.4825 | 6900 | 7.6885 | - |
0.4894 | 7000 | 7.7426 | - |
0.4964 | 7100 | 7.6809 | - |
0.5034 | 7200 | 7.6977 | - |
0.5104 | 7300 | 7.6964 | - |
0.5174 | 7400 | 7.6834 | - |
0.5244 | 7500 | 7.6593 | - |
0.5314 | 7600 | 7.6745 | - |
0.5384 | 7700 | 7.6587 | - |
0.5454 | 7800 | 7.6389 | - |
0.5524 | 7900 | 7.6298 | - |
0.5594 | 8000 | 7.6693 | - |
0.5664 | 8100 | 7.6454 | - |
0.5733 | 8200 | 7.6491 | - |
0.5803 | 8300 | 7.661 | - |
0.5873 | 8400 | 7.6525 | - |
0.5943 | 8500 | 7.6669 | - |
0.6013 | 8600 | 7.6379 | - |
0.6083 | 8700 | 7.6706 | - |
0.6153 | 8800 | 7.6487 | - |
0.6223 | 8900 | 7.6607 | - |
0.6293 | 9000 | 7.6334 | - |
0.6363 | 9100 | 7.6891 | - |
0.6433 | 9200 | 7.734 | - |
0.6503 | 9300 | 7.6283 | - |
0.6573 | 9400 | 7.6461 | - |
0.6642 | 9500 | 7.623 | - |
0.6712 | 9600 | 7.6251 | - |
0.6782 | 9700 | 7.6663 | - |
0.6852 | 9800 | 7.6376 | - |
0.6922 | 9900 | 7.6834 | - |
0.6992 | 10000 | 7.6851 | 7.6099 |
0.7062 | 10100 | 7.6034 | - |
0.7132 | 10200 | 7.6512 | - |
0.7202 | 10300 | 7.6413 | - |
0.7272 | 10400 | 7.6083 | - |
0.7342 | 10500 | 7.6475 | - |
0.7412 | 10600 | 7.61 | - |
0.7481 | 10700 | 7.6404 | - |
0.7551 | 10800 | 7.6308 | - |
0.7621 | 10900 | 7.638 | - |
0.7691 | 11000 | 7.5954 | - |
0.7761 | 11100 | 7.6037 | - |
0.7831 | 11200 | 7.6405 | - |
0.7901 | 11300 | 7.6396 | - |
0.7971 | 11400 | 7.5898 | - |
0.8041 | 11500 | 7.644 | - |
0.8111 | 11600 | 7.639 | - |
0.8181 | 11700 | 7.6146 | - |
0.8251 | 11800 | 7.6076 | - |
0.8321 | 11900 | 7.5997 | - |
0.8390 | 12000 | 7.6196 | - |
0.8460 | 12100 | 7.6139 | - |
0.8530 | 12200 | 7.6335 | - |
0.8600 | 12300 | 7.6057 | - |
0.8670 | 12400 | 7.5759 | - |
0.8740 | 12500 | 7.6044 | - |
0.8810 | 12600 | 7.589 | - |
0.8880 | 12700 | 7.5871 | - |
0.8950 | 12800 | 7.6161 | - |
0.9020 | 12900 | 7.5797 | - |
0.9090 | 13000 | 7.6202 | - |
0.9160 | 13100 | 7.6116 | - |
0.9229 | 13200 | 7.6253 | - |
0.9299 | 13300 | 7.5891 | - |
0.9369 | 13400 | 7.5856 | - |
0.9439 | 13500 | 7.5824 | - |
0.9509 | 13600 | 7.6288 | - |
0.9579 | 13700 | 7.5653 | - |
0.9649 | 13800 | 7.6073 | - |
0.9719 | 13900 | 7.5958 | - |
0.9789 | 14000 | 7.599 | - |
0.9859 | 14100 | 7.5982 | - |
0.9929 | 14200 | 7.5634 | - |
0.9999 | 14300 | 7.5923 | - |
1.0069 | 14400 | 7.6072 | - |
1.0138 | 14500 | 7.5589 | - |
1.0208 | 14600 | 7.6 | - |
1.0278 | 14700 | 7.5464 | - |
1.0348 | 14800 | 7.5824 | - |
1.0418 | 14900 | 7.5528 | - |
1.0488 | 15000 | 7.568 | 7.5618 |
1.0558 | 15100 | 7.559 | - |
1.0628 | 15200 | 7.5555 | - |
1.0698 | 15300 | 7.552 | - |
1.0768 | 15400 | 7.5851 | - |
1.0838 | 15500 | 7.5256 | - |
1.0908 | 15600 | 7.5683 | - |
1.0977 | 15700 | 7.5909 | - |
1.1047 | 15800 | 7.5655 | - |
1.1117 | 15900 | 7.5476 | - |
1.1187 | 16000 | 7.5721 | - |
1.1257 | 16100 | 7.5593 | - |
1.1327 | 16200 | 7.5783 | - |
1.1397 | 16300 | 7.5905 | - |
1.1467 | 16400 | 7.542 | - |
1.1537 | 16500 | 7.5794 | - |
1.1607 | 16600 | 7.5669 | - |
1.1677 | 16700 | 7.5738 | - |
1.1747 | 16800 | 7.5431 | - |
1.1817 | 16900 | 7.5401 | - |
1.1886 | 17000 | 7.5629 | - |
1.1956 | 17100 | 7.5534 | - |
1.2026 | 17200 | 7.571 | - |
1.2096 | 17300 | 7.5387 | - |
1.2166 | 17400 | 7.5596 | - |
1.2236 | 17500 | 7.5427 | - |
1.2306 | 17600 | 7.5305 | - |
1.2376 | 17700 | 7.556 | - |
1.2446 | 17800 | 7.5442 | - |
1.2516 | 17900 | 7.5635 | - |
1.2586 | 18000 | 7.5675 | - |
1.2656 | 18100 | 7.5412 | - |
1.2725 | 18200 | 7.5148 | - |
1.2795 | 18300 | 7.546 | - |
1.2865 | 18400 | 7.5608 | - |
1.2935 | 18500 | 7.5269 | - |
1.3005 | 18600 | 7.5614 | - |
1.3075 | 18700 | 7.5276 | - |
1.3145 | 18800 | 7.5586 | - |
1.3215 | 18900 | 7.5783 | - |
1.3285 | 19000 | 7.5312 | - |
1.3355 | 19100 | 7.536 | - |
1.3425 | 19200 | 7.5497 | - |
1.3495 | 19300 | 7.5256 | - |
1.3565 | 19400 | 7.5364 | - |
1.3634 | 19500 | 7.5311 | - |
1.3704 | 19600 | 7.5557 | - |
1.3774 | 19700 | 7.5531 | - |
1.3844 | 19800 | 7.4844 | - |
1.3914 | 19900 | 7.5408 | - |
1.3984 | 20000 | 7.5336 | 7.5100 |
1.4054 | 20100 | 7.524 | - |
1.4124 | 20200 | 7.5236 | - |
1.4194 | 20300 | 7.5354 | - |
1.4264 | 20400 | 7.5228 | - |
1.4334 | 20500 | 7.5453 | - |
1.4404 | 20600 | 7.5492 | - |
1.4474 | 20700 | 7.5145 | - |
1.4543 | 20800 | 7.5464 | - |
1.4613 | 20900 | 7.5377 | - |
1.4683 | 21000 | 7.5221 | - |
1.4753 | 21100 | 7.5793 | - |
1.4823 | 21200 | 7.5234 | - |
1.4893 | 21300 | 7.4922 | - |
1.4963 | 21400 | 7.5196 | - |
1.5033 | 21500 | 7.5265 | - |
1.5103 | 21600 | 7.5251 | - |
1.5173 | 21700 | 7.4982 | - |
1.5243 | 21800 | 7.5225 | - |
1.5313 | 21900 | 7.5725 | - |
1.5382 | 22000 | 7.5109 | - |
1.5452 | 22100 | 7.5382 | - |
1.5522 | 22200 | 7.5131 | - |
1.5592 | 22300 | 7.5376 | - |
1.5662 | 22400 | 7.5373 | - |
1.5732 | 22500 | 7.5467 | - |
1.5802 | 22600 | 7.519 | - |
1.5872 | 22700 | 7.5137 | - |
1.5942 | 22800 | 7.5511 | - |
1.6012 | 22900 | 7.5376 | - |
1.6082 | 23000 | 7.4912 | - |
1.6152 | 23100 | 7.5331 | - |
1.6222 | 23200 | 7.5223 | - |
1.6291 | 23300 | 7.5342 | - |
1.6361 | 23400 | 7.5171 | - |
1.6431 | 23500 | 7.5225 | - |
1.6501 | 23600 | 7.5273 | - |
1.6571 | 23700 | 7.5179 | - |
1.6641 | 23800 | 7.5508 | - |
1.6711 | 23900 | 7.5064 | - |
1.6781 | 24000 | 7.5008 | - |
1.6851 | 24100 | 7.5046 | - |
1.6921 | 24200 | 7.5295 | - |
1.6991 | 24300 | 7.4983 | - |
1.7061 | 24400 | 7.5451 | - |
1.7130 | 24500 | 7.5092 | - |
1.7200 | 24600 | 7.5434 | - |
1.7270 | 24700 | 7.5296 | - |
1.7340 | 24800 | 7.5036 | - |
1.7410 | 24900 | 7.5133 | - |
1.7480 | 25000 | 7.5222 | 7.4986 |
1.7550 | 25100 | 7.4928 | - |
1.7620 | 25200 | 7.5338 | - |
1.7690 | 25300 | 7.4937 | - |
1.7760 | 25400 | 7.542 | - |
1.7830 | 25500 | 7.5296 | - |
1.7900 | 25600 | 7.5069 | - |
1.7970 | 25700 | 7.5311 | - |
1.8039 | 25800 | 7.5433 | - |
1.8109 | 25900 | 7.4879 | - |
1.8179 | 26000 | 7.5547 | - |
1.8249 | 26100 | 7.5497 | - |
1.8319 | 26200 | 7.5156 | - |
1.8389 | 26300 | 7.4743 | - |
1.8459 | 26400 | 7.4897 | - |
1.8529 | 26500 | 7.4995 | - |
1.8599 | 26600 | 7.5073 | - |
1.8669 | 26700 | 7.5027 | - |
1.8739 | 26800 | 7.4696 | - |
1.8809 | 26900 | 7.4862 | - |
1.8878 | 27000 | 7.5107 | - |
1.8948 | 27100 | 7.4674 | - |
1.9018 | 27200 | 7.4839 | - |
1.9088 | 27300 | 7.5098 | - |
1.9158 | 27400 | 7.5152 | - |
1.9228 | 27500 | 7.5148 | - |
1.9298 | 27600 | 7.4856 | - |
1.9368 | 27700 | 7.5305 | - |
1.9438 | 27800 | 7.4926 | - |
1.9508 | 27900 | 7.5261 | - |
1.9578 | 28000 | 7.5152 | - |
1.9648 | 28100 | 7.5328 | - |
1.9718 | 28200 | 7.4807 | - |
1.9787 | 28300 | 7.4699 | - |
1.9857 | 28400 | 7.5067 | - |
1.9927 | 28500 | 7.4996 | - |
1.9997 | 28600 | 7.5166 | - |
Framework Versions
- Python: 3.8.10
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.4.1+cu118
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
AnglELoss
@misc{li2023angleoptimized,
title={AnglE-optimized Text Embeddings},
author={Xianming Li and Jing Li},
year={2023},
eprint={2309.12871},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for youssefkhalil320/all-MiniLM-L6-v5-pair_score
Base model
sentence-transformers/all-MiniLM-L6-v2