Update README.md
Browse files
README.md
CHANGED
@@ -6,14 +6,14 @@ tags:
|
|
6 |
- BenchX
|
7 |
---
|
8 |
|
9 |
-
#
|
10 |
|
11 |
-
A retrained
|
12 |
|
13 |
## Model Details
|
14 |
-
- **Model Type**:
|
15 |
-
- **Architecture**:
|
16 |
-
- **Original Papers**: [
|
17 |
- **Benchmark Paper**: [BenchX: A Unified Benchmark Framework for Medical Vision-Language Pretraining on Chest X-Rays](https://arxiv.org/abs/2410.21969)
|
18 |
- **Benchmark Framework**: https://github.com/yangzhou12/BenchX
|
19 |
|
@@ -37,43 +37,43 @@ Please follow the [instruction](https://github.com/yangzhou12/BenchX/blob/releas
|
|
37 |
|
38 |
### 1. Classification
|
39 |
|
40 |
-
To fine-tune
|
41 |
|
42 |
```
|
43 |
-
python bin/train.py config/classification/<dataset_name>/
|
44 |
```
|
45 |
|
46 |
### 2. Segmentation
|
47 |
-
To fine-tune
|
48 |
|
49 |
```
|
50 |
-
python mmsegmentation/tools/train.py config/benchmark/<dataset_name>/
|
51 |
```
|
52 |
|
53 |
### 3. Report Generation
|
54 |
-
To fine-tune
|
55 |
```
|
56 |
-
python bin/train.py config/report_generation/<dataset_name>/
|
57 |
```
|
58 |
|
59 |
### 4. Evaluation
|
60 |
-
To evaluate fine-tuned
|
61 |
|
62 |
```
|
63 |
# For classification and report generation
|
64 |
-
python bin/test.py config/<task_name>/<dataset_name>/
|
65 |
|
66 |
# For segmentation
|
67 |
-
python mmsegmentation/tools/my_test.py mmsegmentation/config/<dataset_name>/
|
68 |
```
|
69 |
|
70 |
## Citations
|
71 |
```bibtex
|
72 |
-
@inproceedings{
|
73 |
-
title={
|
74 |
-
author={
|
75 |
-
booktitle={Proceedings of
|
76 |
-
pages={
|
77 |
year={2023},
|
78 |
}
|
79 |
```
|
|
|
6 |
- BenchX
|
7 |
---
|
8 |
|
9 |
+
# PTUnifier Checkpoint Model Card
|
10 |
|
11 |
+
A retrained PTUnifier model for benchmarking medical vision-language pre-training methods within the BenchX framework.
|
12 |
|
13 |
## Model Details
|
14 |
+
- **Model Type**: PTUnifier
|
15 |
+
- **Architecture**: CLIP-ViT-Base image encoder and RoBERTa-Base text encoder
|
16 |
+
- **Original Papers**: [Towards Unifying Medical Vision-and-Language Pre-training via Soft Prompts](https://arxiv.org/abs/2302.08958)
|
17 |
- **Benchmark Paper**: [BenchX: A Unified Benchmark Framework for Medical Vision-Language Pretraining on Chest X-Rays](https://arxiv.org/abs/2410.21969)
|
18 |
- **Benchmark Framework**: https://github.com/yangzhou12/BenchX
|
19 |
|
|
|
37 |
|
38 |
### 1. Classification
|
39 |
|
40 |
+
To fine-tune PTUnifier for classification, run this command:
|
41 |
|
42 |
```
|
43 |
+
python bin/train.py config/classification/<dataset_name>/PTUnifier.yml
|
44 |
```
|
45 |
|
46 |
### 2. Segmentation
|
47 |
+
To fine-tune PTUnifier for segmentation, run this command:
|
48 |
|
49 |
```
|
50 |
+
python mmsegmentation/tools/train.py config/benchmark/<dataset_name>/PTUnifier.yml
|
51 |
```
|
52 |
|
53 |
### 3. Report Generation
|
54 |
+
To fine-tune PTUnifier for report generation, run this command:
|
55 |
```
|
56 |
+
python bin/train.py config/report_generation/<dataset_name>/PTUnifier.yml
|
57 |
```
|
58 |
|
59 |
### 4. Evaluation
|
60 |
+
To evaluate fine-tuned PTUnifier models, run:
|
61 |
|
62 |
```
|
63 |
# For classification and report generation
|
64 |
+
python bin/test.py config/<task_name>/<dataset_name>/PTUnifier.yml validator.splits=[test] ckpt_dir=<path_to_checkpoint>
|
65 |
|
66 |
# For segmentation
|
67 |
+
python mmsegmentation/tools/my_test.py mmsegmentation/config/<dataset_name>/PTUnifier.yml <path_to_checkpoint>
|
68 |
```
|
69 |
|
70 |
## Citations
|
71 |
```bibtex
|
72 |
+
@inproceedings{chen2023towards,
|
73 |
+
title={Towards Unifying Medical Vision-and-Language Pre-training via Soft Prompts},
|
74 |
+
author={Chen, Zhihong and Diao, Shizhe and Wang, Benyou and Li, Guanbin and Wan, Xiang},
|
75 |
+
booktitle={Proceedings of ICCV},
|
76 |
+
pages={23403--23413},
|
77 |
year={2023},
|
78 |
}
|
79 |
```
|