BenchX Retrained Models
Collection
9 items
•
Updated
•
1
A retrained PTUnifier model for benchmarking medical vision-language pre-training methods within the BenchX framework.
Please follow the instruction to install BenchX.
Fine-tuning PTUnifier for classification is not supported yet.
To fine-tune PTUnifier for segmentation, run this command:
python mmsegmentation/tools/train.py config/benchmark/<dataset_name>/ptunifier.yml
To fine-tune PTUnifier for report generation, run this command:
python bin/train.py config/report_generation/<dataset_name>/ptunifier.yml
To evaluate fine-tuned PTUnifier models, run:
# For classification and report generation
python bin/test.py config/<task_name>/<dataset_name>/PTUnifier.yml validator.splits=[test] ckpt_dir=<path_to_checkpoint>
# For segmentation
python mmsegmentation/tools/my_test.py mmsegmentation/config/<dataset_name>/ptunifier.yml <path_to_checkpoint>
@inproceedings{chen2023towards,
title={Towards Unifying Medical Vision-and-Language Pre-training via Soft Prompts},
author={Chen, Zhihong and Diao, Shizhe and Wang, Benyou and Li, Guanbin and Wan, Xiang},
booktitle={Proceedings of ICCV},
pages={23403--23413},
year={2023},
}
@inproceedings{zhou2024benchx,
title={BenchX: A Unified Benchmark Framework for Medical Vision-Language Pretraining on Chest X-Rays},
author={Yang Zhou, Tan Li Hui Faith, Yanyu Xu, Sicong Leng, Xinxing Xu, Yong Liu, Rick Siow Mong Goh},
booktitle={Proceedings of NeurIPS},
year={2024}
}