File size: 2,823 Bytes
fa2c3bc f01962b fa2c3bc f01962b fa2c3bc f01962b fa2c3bc f01962b fa2c3bc 15a31f5 fa2c3bc f01962b fa2c3bc 15a31f5 fa2c3bc f01962b fa2c3bc 15a31f5 fa2c3bc f01962b fa2c3bc 15a31f5 fa2c3bc 15a31f5 fa2c3bc f01962b fa2c3bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: mit
library_name: pytorch
tags:
- Medical Vsion-Language Pre-Training
- BenchX
---
# MGCA-ViT Checkpoint Model Card
A retrained MGCA-ViT model for benchmarking medical vision-language pre-training methods within the BenchX framework.
## Model Details
- **Model Type**: MGCA-ViT
- **Architecture**: ViT-Base image encoder and BioClinicalBERT text encoder
- **Original Papers**: [Multi-Granularity Cross-modal Alignment for Generalized Medical Visual Representation Learning](https://arxiv.org/abs/2210.06044)
- **Benchmark Paper**: [BenchX: A Unified Benchmark Framework for Medical Vision-Language Pretraining on Chest X-Rays](https://arxiv.org/abs/2410.21969)
- **Benchmark Framework**: https://github.com/yangzhou12/BenchX
## Intended Use
- **Primary Use Cases**:
- Benchmarking performance for Medical Image Classification
- Benchmarking performance for Medical Image Segmentation
- Benchmarking performance for Medical Report Generation
## Pre-Training Data
- **Dataset**:
- Data source(s): MIMIC-CXR
- Types of medical images: Frontal chest X-rays
- Text data type: Associated radiology reports
## Prerequisites
Please follow the [instruction](https://github.com/yangzhou12/BenchX/blob/release/README.md#installation) to install BenchX.
## Training & Evaluation
### 1. Classification
To fine-tune MGCA-ViT for classification, run this command:
```
python bin/train.py config/classification/<dataset_name>/mgca_vit.yml
```
### 2. Segmentation
To fine-tune MGCA-ViT for segmentation, run this command:
```
python mmsegmentation/tools/train.py config/benchmark/<dataset_name>/mgca_vit.yml
```
### 3. Report Generation
To fine-tune MGCA-ViT for report generation, run this command:
```
python bin/train.py config/report_generation/<dataset_name>/mgca_vit.yml
```
### 4. Evaluation
To evaluate fine-tuned MGCA-ViT models, run:
```
# For classification and report generation
python bin/test.py config/<task_name>/<dataset_name>/mgca_vit.yml validator.splits=[test] ckpt_dir=<path_to_checkpoint>
# For segmentation
python mmsegmentation/tools/my_test.py mmsegmentation/config/<dataset_name>/mgca_vit.yml <path_to_checkpoint>
```
## Citations
```bibtex
@article{wang2022multi,
title={Multi-granularity cross-modal alignment for generalized medical visual representation learning},
author={Wang, Fuying and Zhou, Yuyin and Wang, Shujun and Vardhanabhuti, Varut and Yu, Lequan},
journal={Advances in NeurIPS},
volume={35},
pages={33536--33549},
year={2022}
}
```
```bibtex
@inproceedings{zhou2024benchx,
title={BenchX: A Unified Benchmark Framework for Medical Vision-Language Pretraining on Chest X-Rays},
author={Yang Zhou, Tan Li Hui Faith, Yanyu Xu, Sicong Leng, Xinxing Xu, Yong Liu, Rick Siow Mong Goh},
booktitle={Proceedings of NeurIPS},
year={2024}
}
``` |