Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,87 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
library_name: pytorch
|
4 |
+
tags:
|
5 |
+
- Medical Vsion-Language Pre-Training
|
6 |
+
- BenchX
|
7 |
+
---
|
8 |
+
|
9 |
+
# M-FLAG Checkpoint Model Card
|
10 |
+
|
11 |
+
A retrained M-FLAG model for benchmarking medical vision-language pre-training methods within the BenchX framework.
|
12 |
+
|
13 |
+
## Model Details
|
14 |
+
- **Model Type**: M-FLAG
|
15 |
+
- **Architecture**: ResNet-50 image encoder and CXR-BERT text encoder
|
16 |
+
- **Original Papers**: [M-FLAG: Medical Vision-Language Pre-training with Frozen Language Models and Latent Space Geometry Optimization](https://arxiv.org/abs/2307.08347)
|
17 |
+
- **Benchmark Paper**: [BenchX: A Unified Benchmark Framework for Medical Vision-Language Pretraining on Chest X-Rays](https://arxiv.org/abs/2410.21969)
|
18 |
+
- **Benchmark Framework**: https://github.com/yangzhou12/BenchX
|
19 |
+
|
20 |
+
## Intended Use
|
21 |
+
- **Primary Use Cases**:
|
22 |
+
- Benchmarking performance for Medical Image Classification
|
23 |
+
- Benchmarking performance for Medical Image Segmentation
|
24 |
+
- Benchmarking performance for Medical Report Generation
|
25 |
+
|
26 |
+
## Pre-Training Data
|
27 |
+
- **Dataset**:
|
28 |
+
- Data source(s): MIMIC-CXR
|
29 |
+
- Types of medical images: Frontal chest X-rays
|
30 |
+
- Text data type: Associated radiology reports
|
31 |
+
|
32 |
+
## Prerequisites
|
33 |
+
|
34 |
+
Please follow the [instruction](https://github.com/yangzhou12/BenchX/blob/release/README.md#installation) to install BenchX.
|
35 |
+
|
36 |
+
## Training & Evaluation
|
37 |
+
|
38 |
+
### 1. Classification
|
39 |
+
|
40 |
+
To fine-tune M-FLAG for classification, run this command:
|
41 |
+
|
42 |
+
```
|
43 |
+
python bin/train.py config/classification/<dataset_name>/M-FLAG.yml
|
44 |
+
```
|
45 |
+
|
46 |
+
### 2. Segmentation
|
47 |
+
To fine-tune M-FLAG for segmentation, run this command:
|
48 |
+
|
49 |
+
```
|
50 |
+
python mmsegmentation/tools/train.py config/benchmark/<dataset_name>/M-FLAG.yml
|
51 |
+
```
|
52 |
+
|
53 |
+
### 3. Report Generation
|
54 |
+
To fine-tune M-FLAG for report generation, run this command:
|
55 |
+
```
|
56 |
+
python bin/train.py config/report_generation/<dataset_name>/M-FLAG.yml
|
57 |
+
```
|
58 |
+
|
59 |
+
### 4. Evaluation
|
60 |
+
To evaluate fine-tuned M-FLAG models, run:
|
61 |
+
|
62 |
+
```
|
63 |
+
# For classification and report generation
|
64 |
+
python bin/test.py config/<task_name>/<dataset_name>/M-FLAG.yml validator.splits=[test] ckpt_dir=<path_to_checkpoint>
|
65 |
+
|
66 |
+
# For segmentation
|
67 |
+
python mmsegmentation/tools/my_test.py mmsegmentation/config/<dataset_name>/M-FLAG.yml <path_to_checkpoint>
|
68 |
+
```
|
69 |
+
|
70 |
+
## Citations
|
71 |
+
```bibtex
|
72 |
+
@inproceedings{huang2021M-FLAG,
|
73 |
+
title={M-FLAG: Medical Vision-Language Pre-training with Frozen Language Models and Latent Space Geometry Optimization},
|
74 |
+
author={Liu, Che and Cheng, Sibo and Chen, Chen and Qiao, Mengyun and Zhang, Weitong and Shah, Anand and Bai, Wenjia and Arcucci, Rossella},
|
75 |
+
booktitle={Proceedings of MICCAI},
|
76 |
+
pages={637--647},
|
77 |
+
year={2023},
|
78 |
+
}
|
79 |
+
```
|
80 |
+
```bibtex
|
81 |
+
@inproceedings{zhou2024benchx,
|
82 |
+
title={BenchX: A Unified Benchmark Framework for Medical Vision-Language Pretraining on Chest X-Rays},
|
83 |
+
author={Yang Zhou, Tan Li Hui Faith, Yanyu Xu, Sicong Leng, Xinxing Xu, Yong Liu, Rick Siow Mong Goh},
|
84 |
+
booktitle={Proceedings of NeurIPS},
|
85 |
+
year={2024}
|
86 |
+
}
|
87 |
+
```
|