language:
- multilingual
license: gemma
library_name: transformers
tags:
- nlp
- code
base_model: google/gemma-2-2b-jpn-it
datasets:
- mlabonne/orpo-dpo-mix-40k
license_link: https://ai.google.dev/gemma/terms
pipeline_tag: text-generation
quantized_by: ymcki
widget:
- messages:
- role: user
content: Can you provide ways to eat combinations of bananas and dragonfruits?
model-index:
- name: gemma-2-2b-jpn-it-abliterated-17-ORPO
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 49.48
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ymcki/gemma-2-2b-jpn-it-abliterated-17-ORPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 14.92
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ymcki/gemma-2-2b-jpn-it-abliterated-17-ORPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 2.87
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ymcki/gemma-2-2b-jpn-it-abliterated-17-ORPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.24
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ymcki/gemma-2-2b-jpn-it-abliterated-17-ORPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 5.67
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ymcki/gemma-2-2b-jpn-it-abliterated-17-ORPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 13.18
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ymcki/gemma-2-2b-jpn-it-abliterated-17-ORPO
name: Open LLM Leaderboard
Original model: https://huggingface.co/google/gemma-2-2b-jpn-it
Prompt format
<start_of_turn>user
{prompt}<end_of_turn>
<start_of_turn>model
<end_of_turn>
<start_of_turn>model
Note that this model does not support a System prompt.
This is abliterated model of google/gemma-2-2b-jpn-it using the method described by mlabonne.
Layer 17 of the original model was chosen for abliteration. I also created another layer 18 abliterated model for comparison.
ORPO fine tuning was performed for four epoches.
Epoch | loss | eval_loss |
---|---|---|
1 | 1.20152769684791564 | 1.0501047372817993 |
2 | 1.25755584239959716 | 1.0144596099853516 |
3 | 0.93099724054336543 | 0.9957754611968994 |
4 | 0.88664623498916623 | 0.9857067465782166 |
The fine tuned model is uploaded here to be evaluated by the Open LLM Leaderboard to see if the slightly brain damaged non-ORPO model can be healed. Again, the fine tuning method is also based on one described by mlabonne but the input model was read into VRAM by unsloth to allow using the full 40k dataset to run on a single 3090.
Benchmark (100.0*raw scores only)
Click on the model name go to the raw score json generated by Open LLM Leaderboard.
Model | Average | IFEval | BHH | Math Lv5 | GPQA | MUSR | MMLU-PRO |
---|---|---|---|---|---|---|---|
gemma-2-2b-jpn-it | 30.82 | 54.11 | 41.43 | 0.0 | 27.52 | 37.17 | 24.67 |
gemma-2-2b-jpn-it-abliterated-17-ORPO | 29.99 | 50.94 | 38.59 | 2.87 | 27.43 | 38.23 | 21.86 |
gemma-2-2b-jpn-it-abliterated-17 | 30.29 | 52.65 | 40.46 | 0.0 | 27.18 | 36.90 | 24.55 |
gemma-2-2b-jpn-it-abliterated-18 | 30.61 | 53.02 | 40.96 | 0.0 | 27.35 | 37.30 | 25.05 |
Looks like fine tuning is probably not enough. May need to run more epoches.
How to run this model
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
model_id = "gemma-2-2b-jpn-it-abliterated-17-ORPO"
dtype = torch.bfloat16
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="cuda",
torch_dtype=dtype,)
chat = [
{ "role": "user", "content": "Write a hello world program" },
]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
Downloading using huggingface-cli
First, make sure you have hugginface-cli installed:
pip install -U "huggingface_hub[cli]"
Then, you can target the specific file you want:
huggingface-cli download ymcki/gemma-2-2b-jpn-it-abliterated-17-ORPO --include "*" --local-dir ./
Credits
Thank you mlabonne for describing his fine tuning method.
Thanks FullOf_Bad_Ideas from LocalLlama for the suggestion of using unsloth to save VRAM.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 14.89 |
IFEval (0-Shot) | 49.48 |
BBH (3-Shot) | 14.92 |
MATH Lvl 5 (4-Shot) | 2.87 |
GPQA (0-shot) | 3.24 |
MuSR (0-shot) | 5.67 |
MMLU-PRO (5-shot) | 13.18 |