File size: 7,465 Bytes
92e511e
 
 
 
 
 
 
 
 
 
 
 
d3a17d0
 
 
 
 
 
 
 
 
 
 
 
92e511e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3a17d0
 
 
 
92e511e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3a17d0
92e511e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3a17d0
92e511e
 
 
d3a17d0
 
92e511e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3a17d0
 
 
 
 
 
 
92e511e
 
d3a17d0
 
92e511e
 
 
d3a17d0
 
92e511e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
---
base_model: sentence-transformers/paraphrase-mpnet-base-v2
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: All critical security parameters are injected into the system during production.
- text: A 256-bit seed key for the ANSI X9.31 RNG function using AES-256 is stored
    in plaintext in RAM, generated securely at the factory, and embedded in flash
    memory.
- text: Random number generator obtains its seed key by reading bytes from the /dev/urandom
    device. The seed key is stored in SDRAM in plaintext while in use and is deleted
    from memory on power-down, reboot, or any command that is followed by a reboot,
    such as switching between non-approved and approved modes, zeroization, restore
    factory settings, and reset shared key.
- text: X9.31 PRNG seed keys Triple-DES (112 bit) Generated by gathering entropy.
- text: 'X Seed Key for RNG: Seed created by NDRNG and used as the Triple DES key
    in the ANSI X9.31 RNG.'
inference: true
---

# SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label    | Examples                                                                                                                                                                                                                                                                                                       |
|:---------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| positive | <ul><li>'The private key component of an ANSI X9.31-compliant PRNG is stored securely in NVRAM.'</li><li>'It is generated in the factory (a secure environment) using the hardware RNG Embedded in FLASH.'</li><li>'The internal DRBG state value of the RNG is stored in NVRAM for persistent use.'</li></ul> |
| negative | <ul><li>'The NDRNG is used to generate seed & seed key values to feed the DRNG.'</li><li>'module stores RNG and DRBG state values only in RAM.'</li><li>'PRNG Seed Key A new ANSI X9.31 RNG Seed Key is generated from a block of 160 bits output by the random noise source software library.'</li></ul>      |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("yasirdemircan/setfit_rng_v6")
# Run inference
preds = model("X9.31 PRNG seed keys Triple-DES (112 bit) Generated by gathering entropy.")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 6   | 18.8889 | 49  |

| Label    | Training Sample Count |
|:---------|:----------------------|
| negative | 23                    |
| positive | 22                    |

### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True

### Training Results
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0294 | 1    | 0.2114        | -               |
| 1.0    | 34   | -             | 0.0933          |
| 1.4706 | 50   | 0.1015        | -               |
| 2.0    | 68   | -             | 0.0967          |
| 2.9412 | 100  | 0.0008        | -               |
| 3.0    | 102  | -             | 0.1039          |
| 4.0    | 136  | -             | 0.1055          |

### Framework Versions
- Python: 3.10.16
- SetFit: 1.1.1
- Sentence Transformers: 3.3.1
- Transformers: 4.45.2
- PyTorch: 2.5.1+cu124
- Datasets: 3.2.0
- Tokenizers: 0.20.3

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->