Add SetFit model
Browse files- 1_Pooling/config.json +10 -0
- README.md +193 -0
- config.json +24 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +7 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +59 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: sentence-transformers/paraphrase-mpnet-base-v2
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: The RNG (Random Number Generator) key or DRBG (Deterministic Random Bit Generator)
|
14 |
+
key is generated and stored as a 128-bit value through an entropy source meeting
|
15 |
+
the security strength needed for random number generation, specifically ANS X9.31
|
16 |
+
compliant.
|
17 |
+
- text: The RNG (Random Number Generator) key or DRBG (Deterministic Random Bit Generator)
|
18 |
+
key is statically stored and hardcoded into the code as a seed value, which is
|
19 |
+
then used to initialize the PRNG (Pseudorandom Number Generator).
|
20 |
+
- text: The RNG (Random Number Generator) key or DRBG (Deterministic Random Bit Generator)
|
21 |
+
key is generated and stored within the device's firmware or software at manufacturing
|
22 |
+
time as part of the CSP injection process.
|
23 |
+
- text: The RNG (Random Number Generator) key or DRBG (Deterministic Random Bit Generator)
|
24 |
+
key is internally generated and never exits the module, meaning it is not explicitly
|
25 |
+
stored, created, or compiled as it exists solely within the volatile memory of
|
26 |
+
the system.
|
27 |
+
- text: The PRNG (Pseudorandom Number Generator) key or DRBG (Deterministic Random
|
28 |
+
Bit Generator) key is generated and stored securely in a private key portion of
|
29 |
+
an ANSI X9.31-compliant format within non-volatile random access memory (NVRAM).
|
30 |
+
inference: true
|
31 |
+
---
|
32 |
+
|
33 |
+
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2
|
34 |
+
|
35 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
36 |
+
|
37 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
38 |
+
|
39 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
40 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
41 |
+
|
42 |
+
## Model Details
|
43 |
+
|
44 |
+
### Model Description
|
45 |
+
- **Model Type:** SetFit
|
46 |
+
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
|
47 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
48 |
+
- **Maximum Sequence Length:** 512 tokens
|
49 |
+
- **Number of Classes:** 2 classes
|
50 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
51 |
+
<!-- - **Language:** Unknown -->
|
52 |
+
<!-- - **License:** Unknown -->
|
53 |
+
|
54 |
+
### Model Sources
|
55 |
+
|
56 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
57 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
58 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
59 |
+
|
60 |
+
### Model Labels
|
61 |
+
| Label | Examples |
|
62 |
+
|:---------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
63 |
+
| negative | <ul><li>"The RNG (Random Number Generator) key or DRBG (Deterministic Random Bit Generator) key is generated by calling `get_random_bytes()` to obtain bits from the Linux kernel's hardware-based non-deterministic random number generator and then used as input for AES 128 encryption, without being explicitly stored."</li><li>'The RNG (Random Number Generator) key or DRBG (Deterministic Random Bit Generator) key is obtained by reading bytes from the /dev/urandom device and then temporarily stored in plaintext SDRAM while in use before being deleted on power-down, reboot, or certain commands that require a restart.'</li><li>'The ANSI X9.31 PRNG (Pseudorandom Number Generator) key, also known as the DRBG (Deterministic Random Bit Generator) key, is generated internally by the kernel and not explicitly stored, created, or compiled, but rather used directly to produce random numbers for cryptographic purposes.'</li></ul> |
|
64 |
+
| positive | <ul><li>'In an ANSI X9.31-compliant PRNG, the private key (RNG key or DRBG key) is generated and stored securely in Non-Volatile Random Access Memory (NVRAM).'</li><li>'The RNG (Random Number Generator) key or DRBG (Deterministic Random Bit Generator) key is generated and permanently stored in read-only memory (FLASH) within the factory environment using hardware-based random number generation embedded in FLASH.'</li><li>'The RNG (DRBG) key is not explicitly mentioned as being stored, but its internal state value is persisted in Non-Volatile Random Access Memory (NVRAM), implying that the key is implicitly tied to this persistent state and does not have an independent storage mechanism.'</li></ul> |
|
65 |
+
|
66 |
+
## Uses
|
67 |
+
|
68 |
+
### Direct Use for Inference
|
69 |
+
|
70 |
+
First install the SetFit library:
|
71 |
+
|
72 |
+
```bash
|
73 |
+
pip install setfit
|
74 |
+
```
|
75 |
+
|
76 |
+
Then you can load this model and run inference.
|
77 |
+
|
78 |
+
```python
|
79 |
+
from setfit import SetFitModel
|
80 |
+
|
81 |
+
# Download from the 🤗 Hub
|
82 |
+
model = SetFitModel.from_pretrained("yasirdemircan/setfit_rng_v6")
|
83 |
+
# Run inference
|
84 |
+
preds = model("The RNG (Random Number Generator) key or DRBG (Deterministic Random Bit Generator) key is generated and stored within the device's firmware or software at manufacturing time as part of the CSP injection process.")
|
85 |
+
```
|
86 |
+
|
87 |
+
<!--
|
88 |
+
### Downstream Use
|
89 |
+
|
90 |
+
*List how someone could finetune this model on their own dataset.*
|
91 |
+
-->
|
92 |
+
|
93 |
+
<!--
|
94 |
+
### Out-of-Scope Use
|
95 |
+
|
96 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
97 |
+
-->
|
98 |
+
|
99 |
+
<!--
|
100 |
+
## Bias, Risks and Limitations
|
101 |
+
|
102 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
103 |
+
-->
|
104 |
+
|
105 |
+
<!--
|
106 |
+
### Recommendations
|
107 |
+
|
108 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
109 |
+
-->
|
110 |
+
|
111 |
+
## Training Details
|
112 |
+
|
113 |
+
### Training Set Metrics
|
114 |
+
| Training set | Min | Median | Max |
|
115 |
+
|:-------------|:----|:--------|:----|
|
116 |
+
| Word count | 24 | 36.8444 | 52 |
|
117 |
+
|
118 |
+
| Label | Training Sample Count |
|
119 |
+
|:---------|:----------------------|
|
120 |
+
| negative | 22 |
|
121 |
+
| positive | 23 |
|
122 |
+
|
123 |
+
### Training Hyperparameters
|
124 |
+
- batch_size: (16, 16)
|
125 |
+
- num_epochs: (4, 4)
|
126 |
+
- max_steps: -1
|
127 |
+
- sampling_strategy: oversampling
|
128 |
+
- body_learning_rate: (2e-05, 1e-05)
|
129 |
+
- head_learning_rate: 0.01
|
130 |
+
- loss: CosineSimilarityLoss
|
131 |
+
- distance_metric: cosine_distance
|
132 |
+
- margin: 0.25
|
133 |
+
- end_to_end: False
|
134 |
+
- use_amp: False
|
135 |
+
- warmup_proportion: 0.1
|
136 |
+
- l2_weight: 0.01
|
137 |
+
- seed: 42
|
138 |
+
- eval_max_steps: -1
|
139 |
+
- load_best_model_at_end: True
|
140 |
+
|
141 |
+
### Training Results
|
142 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
143 |
+
|:------:|:----:|:-------------:|:---------------:|
|
144 |
+
| 0.0294 | 1 | 0.2664 | - |
|
145 |
+
| 1.0 | 34 | - | 0.2420 |
|
146 |
+
| 1.4706 | 50 | 0.1035 | - |
|
147 |
+
| 2.0 | 68 | - | 0.2950 |
|
148 |
+
| 2.9412 | 100 | 0.0005 | - |
|
149 |
+
| 3.0 | 102 | - | 0.2981 |
|
150 |
+
| 4.0 | 136 | - | 0.3001 |
|
151 |
+
|
152 |
+
### Framework Versions
|
153 |
+
- Python: 3.10.15
|
154 |
+
- SetFit: 1.2.0.dev0
|
155 |
+
- Sentence Transformers: 3.3.1
|
156 |
+
- Transformers: 4.45.2
|
157 |
+
- PyTorch: 2.5.1+cu124
|
158 |
+
- Datasets: 2.19.1
|
159 |
+
- Tokenizers: 0.20.1
|
160 |
+
|
161 |
+
## Citation
|
162 |
+
|
163 |
+
### BibTeX
|
164 |
+
```bibtex
|
165 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
166 |
+
doi = {10.48550/ARXIV.2209.11055},
|
167 |
+
url = {https://arxiv.org/abs/2209.11055},
|
168 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
169 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
170 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
171 |
+
publisher = {arXiv},
|
172 |
+
year = {2022},
|
173 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
174 |
+
}
|
175 |
+
```
|
176 |
+
|
177 |
+
<!--
|
178 |
+
## Glossary
|
179 |
+
|
180 |
+
*Clearly define terms in order to be accessible across audiences.*
|
181 |
+
-->
|
182 |
+
|
183 |
+
<!--
|
184 |
+
## Model Card Authors
|
185 |
+
|
186 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
187 |
+
-->
|
188 |
+
|
189 |
+
<!--
|
190 |
+
## Model Card Contact
|
191 |
+
|
192 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
193 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/paraphrase-mpnet-base-v2",
|
3 |
+
"architectures": [
|
4 |
+
"MPNetModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "mpnet",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"relative_attention_num_buckets": 32,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.45.2",
|
23 |
+
"vocab_size": 30527
|
24 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.45.2",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
+
"labels": [
|
4 |
+
"negative",
|
5 |
+
"positive"
|
6 |
+
]
|
7 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:444c3024db43fa64a870a60c9e67e0d62aec4a4ad65b13264cb2a3629d25ae32
|
3 |
+
size 437967672
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2baa2f55c86e3f01e9b3e7b3383e6c38eed55769939aefd4166b97f5ef837310
|
3 |
+
size 7055
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"104": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"30526": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": true,
|
49 |
+
"eos_token": "</s>",
|
50 |
+
"mask_token": "<mask>",
|
51 |
+
"model_max_length": 512,
|
52 |
+
"never_split": null,
|
53 |
+
"pad_token": "<pad>",
|
54 |
+
"sep_token": "</s>",
|
55 |
+
"strip_accents": null,
|
56 |
+
"tokenize_chinese_chars": true,
|
57 |
+
"tokenizer_class": "MPNetTokenizer",
|
58 |
+
"unk_token": "[UNK]"
|
59 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|