|
--- |
|
library_name: peft |
|
license: other |
|
base_model: deepseek-ai/deepseek-coder-1.3b-base |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: lemexp-task1-v2-lemma_object_small_nodefs-deepseek-coder-1.3b-base-ddp-8lr-v2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# lemexp-task1-v2-lemma_object_small_nodefs-deepseek-coder-1.3b-base-ddp-8lr-v2 |
|
|
|
This model is a fine-tuned version of [deepseek-ai/deepseek-coder-1.3b-base](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2645 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0008 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- total_train_batch_size: 16 |
|
- total_eval_batch_size: 16 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 12 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-------:|:-----:|:---------------:| |
|
| 0.6349 | 0.2001 | 720 | 0.5111 | |
|
| 0.5017 | 0.4001 | 1440 | 0.4620 | |
|
| 0.4349 | 0.6002 | 2160 | 0.4331 | |
|
| 0.417 | 0.8002 | 2880 | 0.4095 | |
|
| 0.3957 | 1.0003 | 3600 | 0.4012 | |
|
| 0.3607 | 1.2003 | 4320 | 0.3890 | |
|
| 0.3585 | 1.4004 | 5040 | 0.3751 | |
|
| 0.3561 | 1.6004 | 5760 | 0.3749 | |
|
| 0.3505 | 1.8005 | 6480 | 0.3672 | |
|
| 0.3438 | 2.0006 | 7200 | 0.3510 | |
|
| 0.323 | 2.2006 | 7920 | 0.3524 | |
|
| 0.3172 | 2.4007 | 8640 | 0.3435 | |
|
| 0.3133 | 2.6007 | 9360 | 0.3368 | |
|
| 0.3125 | 2.8008 | 10080 | 0.3331 | |
|
| 0.312 | 3.0008 | 10800 | 0.3309 | |
|
| 0.2852 | 3.2009 | 11520 | 0.3303 | |
|
| 0.2916 | 3.4009 | 12240 | 0.3187 | |
|
| 0.2876 | 3.6010 | 12960 | 0.3235 | |
|
| 0.2868 | 3.8011 | 13680 | 0.3209 | |
|
| 0.287 | 4.0011 | 14400 | 0.3150 | |
|
| 0.2582 | 4.2012 | 15120 | 0.3147 | |
|
| 0.2678 | 4.4012 | 15840 | 0.3117 | |
|
| 0.2625 | 4.6013 | 16560 | 0.3082 | |
|
| 0.2683 | 4.8013 | 17280 | 0.3010 | |
|
| 0.2597 | 5.0014 | 18000 | 0.3030 | |
|
| 0.2402 | 5.2014 | 18720 | 0.3017 | |
|
| 0.2405 | 5.4015 | 19440 | 0.2975 | |
|
| 0.2441 | 5.6016 | 20160 | 0.2950 | |
|
| 0.2443 | 5.8016 | 20880 | 0.2945 | |
|
| 0.2383 | 6.0017 | 21600 | 0.2912 | |
|
| 0.2208 | 6.2017 | 22320 | 0.2862 | |
|
| 0.2233 | 6.4018 | 23040 | 0.2856 | |
|
| 0.2222 | 6.6018 | 23760 | 0.2818 | |
|
| 0.2208 | 6.8019 | 24480 | 0.2808 | |
|
| 0.2214 | 7.0019 | 25200 | 0.2786 | |
|
| 0.2039 | 7.2020 | 25920 | 0.2844 | |
|
| 0.1996 | 7.4021 | 26640 | 0.2802 | |
|
| 0.1996 | 7.6021 | 27360 | 0.2814 | |
|
| 0.2003 | 7.8022 | 28080 | 0.2721 | |
|
| 0.2047 | 8.0022 | 28800 | 0.2717 | |
|
| 0.1801 | 8.2023 | 29520 | 0.2722 | |
|
| 0.1771 | 8.4023 | 30240 | 0.2736 | |
|
| 0.1814 | 8.6024 | 30960 | 0.2716 | |
|
| 0.1781 | 8.8024 | 31680 | 0.2663 | |
|
| 0.1812 | 9.0025 | 32400 | 0.2668 | |
|
| 0.1584 | 9.2026 | 33120 | 0.2684 | |
|
| 0.1578 | 9.4026 | 33840 | 0.2635 | |
|
| 0.1627 | 9.6027 | 34560 | 0.2666 | |
|
| 0.1612 | 9.8027 | 35280 | 0.2601 | |
|
| 0.1576 | 10.0028 | 36000 | 0.2623 | |
|
| 0.14 | 10.2028 | 36720 | 0.2660 | |
|
| 0.1403 | 10.4029 | 37440 | 0.2619 | |
|
| 0.1407 | 10.6029 | 38160 | 0.2592 | |
|
| 0.1399 | 10.8030 | 38880 | 0.2594 | |
|
| 0.1424 | 11.0031 | 39600 | 0.2599 | |
|
| 0.1275 | 11.2031 | 40320 | 0.2703 | |
|
| 0.1253 | 11.4032 | 41040 | 0.2662 | |
|
| 0.1242 | 11.6032 | 41760 | 0.2641 | |
|
| 0.1234 | 11.8033 | 42480 | 0.2645 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.14.0 |
|
- Transformers 4.47.0 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |