|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:212940 |
|
- loss:CosineSimilarityLoss |
|
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
widget: |
|
- source_sentence: Ringkasan data strategis BPS 2012 |
|
sentences: |
|
- Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut Provinsi dan |
|
Jenis Pekerjaan Utama, 2021 |
|
- Laporan Perekonomian Indonesia 2007 |
|
- Statistik Potensi Desa Provinsi Banten 2008 |
|
- source_sentence: tahun berapa ekspor naik 2,37% dan impor naik 30,30%? |
|
sentences: |
|
- Bulan November 2006 Ekspor Naik 2,37 % dan Impor Naik 30,30 % |
|
- Indeks Harga Konsumen per Kelompok di 82 Kota <sup>1</sup> (2012=100) |
|
- 'Februari 2022: Tingkat Pengangguran Terbuka (TPT) sebesar 5,83 persen dan Rata-rata |
|
upah buruh sebesar 2,89 juta rupiah per bulan' |
|
- source_sentence: akses air bersih di indonesia (2005-2009) |
|
sentences: |
|
- Desember 2016, Rupiah Terapresiasi 0,74 Persen Terhadap Dolar Amerika |
|
- Statistik Air Bersih 2005-2009 |
|
- Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut Pendidikan Tertinggi |
|
yang Ditamatkan dan Lapangan Pekerjaan Utama di 17 Sektor (rupiah), 2018 |
|
- source_sentence: Tinjauan Regional Berdasarkan PDRB Kabupaten/Kota 2014-2018, Buku |
|
2 Pulau Jawa dan Bali |
|
sentences: |
|
- Profil Migran Hasil Susenas 2011-2012 |
|
- Statistik Gas Kota 2004-2008 |
|
- Jumlah kunjungan wisman ke Indonesia melalui pintu masuk utama pada Juni 2022 |
|
mencapai 345,44 ribu kunjungan dan Jumlah penumpang angkutan udara internasional |
|
pada Juni 2022 naik 23,28 persen |
|
- source_sentence: perubahan nilai tukar petani bulan mei 2017 |
|
sentences: |
|
- Perkembangan Nilai Tukar Petani Mei 2017 |
|
- NTP Naik 0,15%, Harga Gabah Kualitas GKG Naik 0,98% |
|
- Statistik Restoran/Rumah Makan Tahun 2014 |
|
datasets: |
|
- yahyaabd/allstats-semantic-search-synthetic-dataset-v1 |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
model-index: |
|
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: allstats semantic search mini v1 ev |
|
type: allstats-semantic-search-mini-v1-ev |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.9941642060264452 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.9500670338760151 |
|
name: Spearman Cosine |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: allstat semantic search mini v1 test |
|
type: allstat-semantic-search-mini-v1-test |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.9944714588734742 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.9512629234712933 |
|
name: Spearman Cosine |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the [allstats-semantic-search-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 8d6b950845285729817bf8e1af1861502c2fed0c --> |
|
- **Maximum Sequence Length:** 128 tokens |
|
- **Output Dimensionality:** 384 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [allstats-semantic-search-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1) |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("yahyaabd/allstats-semantic-search-mini-v1") |
|
# Run inference |
|
sentences = [ |
|
'perubahan nilai tukar petani bulan mei 2017', |
|
'Perkembangan Nilai Tukar Petani Mei 2017', |
|
'Statistik Restoran/Rumah Makan Tahun 2014', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
|
|
* Datasets: `allstats-semantic-search-mini-v1-ev` and `allstat-semantic-search-mini-v1-test` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | allstats-semantic-search-mini-v1-ev | allstat-semantic-search-mini-v1-test | |
|
|:--------------------|:------------------------------------|:-------------------------------------| |
|
| pearson_cosine | 0.9942 | 0.9945 | |
|
| **spearman_cosine** | **0.9501** | **0.9513** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### allstats-semantic-search-synthetic-dataset-v1 |
|
|
|
* Dataset: [allstats-semantic-search-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1) at [b13c0a7](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1/tree/b13c0a7412396a836cfbb887e140f183f3a6d65e) |
|
* Size: 212,940 training samples |
|
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | query | doc | label | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 11.46 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.47 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.05</li></ul> | |
|
* Samples: |
|
| query | doc | label | |
|
|:---------------------------------------------------------------|:-----------------------------------------------------------------------|:------------------| |
|
| <code>aDta industri besar dan sedang Indonesia 2008</code> | <code>Statistik Industri Besar dan Sedang Indonesia 2008</code> | <code>0.9</code> | |
|
| <code>profil bisnis konstruksi individu jawa barat 2022</code> | <code>Statistik Industri Manufaktur Indonesia 2015 - Bahan Baku</code> | <code>0.15</code> | |
|
| <code>data statistik ekonomi indonesia</code> | <code>Nilai Tukar Valuta Asing di Indonesia 2014</code> | <code>0.08</code> | |
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
```json |
|
{ |
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### allstats-semantic-search-synthetic-dataset-v1 |
|
|
|
* Dataset: [allstats-semantic-search-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1) at [b13c0a7](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1/tree/b13c0a7412396a836cfbb887e140f183f3a6d65e) |
|
* Size: 26,618 evaluation samples |
|
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | query | doc | label | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 11.38 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.63 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.51</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| query | doc | label | |
|
|:-------------------------------------------------------------------|:---------------------------------------------------------------------------|:------------------| |
|
| <code>tahun berapa ekspor naik 2,37% dan impor naik 30,30%?</code> | <code>Bulan November 2006 Ekspor Naik 2,37 % dan Impor Naik 30,30 %</code> | <code>1.0</code> | |
|
| <code>Berapa produksi padi pada tahun 2023?</code> | <code>Produksi padi tahun lainnya</code> | <code>0.0</code> | |
|
| <code>data statistik solus per aqua 2015</code> | <code>Statistik Solus Per Aqua (SPA) 2015</code> | <code>0.97</code> | |
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
```json |
|
{ |
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `num_train_epochs`: 20 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 20 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
<details><summary>Click to expand</summary> |
|
|
|
| Epoch | Step | Training Loss | Validation Loss | allstats-semantic-search-mini-v1-ev_spearman_cosine | allstat-semantic-search-mini-v1-test_spearman_cosine | |
|
|:-------:|:-----:|:-------------:|:---------------:|:---------------------------------------------------:|:----------------------------------------------------:| |
|
| 0.1502 | 500 | 0.0794 | 0.0524 | 0.6869 | - | |
|
| 0.3005 | 1000 | 0.0465 | 0.0364 | 0.7262 | - | |
|
| 0.4507 | 1500 | 0.0339 | 0.0267 | 0.7638 | - | |
|
| 0.6010 | 2000 | 0.0263 | 0.0222 | 0.7804 | - | |
|
| 0.7512 | 2500 | 0.0228 | 0.0197 | 0.7883 | - | |
|
| 0.9014 | 3000 | 0.0201 | 0.0193 | 0.7894 | - | |
|
| 1.0517 | 3500 | 0.018 | 0.0166 | 0.8000 | - | |
|
| 1.2019 | 4000 | 0.0156 | 0.0154 | 0.7927 | - | |
|
| 1.3522 | 4500 | 0.0148 | 0.0146 | 0.8211 | - | |
|
| 1.5024 | 5000 | 0.014 | 0.0137 | 0.8137 | - | |
|
| 1.6526 | 5500 | 0.014 | 0.0132 | 0.8160 | - | |
|
| 1.8029 | 6000 | 0.0132 | 0.0125 | 0.8309 | - | |
|
| 1.9531 | 6500 | 0.0127 | 0.0117 | 0.8221 | - | |
|
| 2.1034 | 7000 | 0.0115 | 0.0111 | 0.8269 | - | |
|
| 2.2536 | 7500 | 0.0106 | 0.0135 | 0.8157 | - | |
|
| 2.4038 | 8000 | 0.0101 | 0.0104 | 0.8423 | - | |
|
| 2.5541 | 8500 | 0.0098 | 0.0100 | 0.8329 | - | |
|
| 2.7043 | 9000 | 0.0093 | 0.0095 | 0.8415 | - | |
|
| 2.8546 | 9500 | 0.0085 | 0.0089 | 0.8517 | - | |
|
| 3.0048 | 10000 | 0.0082 | 0.0086 | 0.8537 | - | |
|
| 3.1550 | 10500 | 0.0066 | 0.0083 | 0.8508 | - | |
|
| 3.3053 | 11000 | 0.0073 | 0.0082 | 0.8450 | - | |
|
| 3.4555 | 11500 | 0.0071 | 0.0083 | 0.8574 | - | |
|
| 3.6058 | 12000 | 0.0071 | 0.0082 | 0.8486 | - | |
|
| 3.7560 | 12500 | 0.0068 | 0.0079 | 0.8610 | - | |
|
| 3.9062 | 13000 | 0.0065 | 0.0072 | 0.8649 | - | |
|
| 4.0565 | 13500 | 0.0062 | 0.0069 | 0.8602 | - | |
|
| 4.2067 | 14000 | 0.0052 | 0.0068 | 0.8680 | - | |
|
| 4.3570 | 14500 | 0.0052 | 0.0066 | 0.8639 | - | |
|
| 4.5072 | 15000 | 0.0051 | 0.0069 | 0.8664 | - | |
|
| 4.6575 | 15500 | 0.0051 | 0.0061 | 0.8782 | - | |
|
| 4.8077 | 16000 | 0.0052 | 0.0061 | 0.8721 | - | |
|
| 4.9579 | 16500 | 0.0051 | 0.0058 | 0.8781 | - | |
|
| 5.1082 | 17000 | 0.0044 | 0.0058 | 0.8788 | - | |
|
| 5.2584 | 17500 | 0.0039 | 0.0056 | 0.8803 | - | |
|
| 5.4087 | 18000 | 0.0042 | 0.0056 | 0.8807 | - | |
|
| 5.5589 | 18500 | 0.0041 | 0.0055 | 0.8818 | - | |
|
| 5.7091 | 19000 | 0.004 | 0.0051 | 0.8865 | - | |
|
| 5.8594 | 19500 | 0.0042 | 0.0052 | 0.8848 | - | |
|
| 6.0096 | 20000 | 0.0039 | 0.0050 | 0.8859 | - | |
|
| 6.1599 | 20500 | 0.0032 | 0.0049 | 0.8882 | - | |
|
| 6.3101 | 21000 | 0.0034 | 0.0048 | 0.8924 | - | |
|
| 6.4603 | 21500 | 0.0033 | 0.0049 | 0.8943 | - | |
|
| 6.6106 | 22000 | 0.0033 | 0.0051 | 0.8862 | - | |
|
| 6.7608 | 22500 | 0.0036 | 0.0046 | 0.8946 | - | |
|
| 6.9111 | 23000 | 0.0034 | 0.0045 | 0.8968 | - | |
|
| 7.0613 | 23500 | 0.0027 | 0.0042 | 0.9026 | - | |
|
| 7.2115 | 24000 | 0.0026 | 0.0042 | 0.9010 | - | |
|
| 7.3618 | 24500 | 0.0026 | 0.0044 | 0.9000 | - | |
|
| 7.5120 | 25000 | 0.0029 | 0.0043 | 0.8946 | - | |
|
| 7.6623 | 25500 | 0.0028 | 0.0041 | 0.9044 | - | |
|
| 7.8125 | 26000 | 0.0027 | 0.0040 | 0.9065 | - | |
|
| 7.9627 | 26500 | 0.0028 | 0.0039 | 0.9025 | - | |
|
| 8.1130 | 27000 | 0.0022 | 0.0037 | 0.9064 | - | |
|
| 8.2632 | 27500 | 0.0021 | 0.0037 | 0.9094 | - | |
|
| 8.4135 | 28000 | 0.0023 | 0.0037 | 0.9079 | - | |
|
| 8.5637 | 28500 | 0.0022 | 0.0038 | 0.9018 | - | |
|
| 8.7139 | 29000 | 0.0023 | 0.0038 | 0.9082 | - | |
|
| 8.8642 | 29500 | 0.0024 | 0.0035 | 0.9127 | - | |
|
| 9.0144 | 30000 | 0.0022 | 0.0034 | 0.9143 | - | |
|
| 9.1647 | 30500 | 0.0018 | 0.0034 | 0.9151 | - | |
|
| 9.3149 | 31000 | 0.002 | 0.0034 | 0.9159 | - | |
|
| 9.4651 | 31500 | 0.0019 | 0.0033 | 0.9159 | - | |
|
| 9.6154 | 32000 | 0.0019 | 0.0033 | 0.9162 | - | |
|
| 9.7656 | 32500 | 0.0021 | 0.0033 | 0.9180 | - | |
|
| 9.9159 | 33000 | 0.0019 | 0.0030 | 0.9204 | - | |
|
| 10.0661 | 33500 | 0.0018 | 0.0030 | 0.9216 | - | |
|
| 10.2163 | 34000 | 0.0016 | 0.0030 | 0.9212 | - | |
|
| 10.3666 | 34500 | 0.0015 | 0.0030 | 0.9206 | - | |
|
| 10.5168 | 35000 | 0.0016 | 0.0032 | 0.9227 | - | |
|
| 10.6671 | 35500 | 0.0017 | 0.0029 | 0.9220 | - | |
|
| 10.8173 | 36000 | 0.0016 | 0.0031 | 0.9255 | - | |
|
| 10.9675 | 36500 | 0.0018 | 0.0029 | 0.9241 | - | |
|
| 11.1178 | 37000 | 0.0013 | 0.0030 | 0.9261 | - | |
|
| 11.2680 | 37500 | 0.0013 | 0.0029 | 0.9264 | - | |
|
| 11.4183 | 38000 | 0.0015 | 0.0030 | 0.9269 | - | |
|
| 11.5685 | 38500 | 0.0014 | 0.0028 | 0.9272 | - | |
|
| 11.7188 | 39000 | 0.0014 | 0.0029 | 0.9277 | - | |
|
| 11.8690 | 39500 | 0.0014 | 0.0028 | 0.9288 | - | |
|
| 12.0192 | 40000 | 0.0014 | 0.0028 | 0.9300 | - | |
|
| 12.1695 | 40500 | 0.0011 | 0.0027 | 0.9327 | - | |
|
| 12.3197 | 41000 | 0.0012 | 0.0028 | 0.9323 | - | |
|
| 12.4700 | 41500 | 0.0013 | 0.0028 | 0.9324 | - | |
|
| 12.6202 | 42000 | 0.0014 | 0.0027 | 0.9327 | - | |
|
| 12.7704 | 42500 | 0.0013 | 0.0027 | 0.9323 | - | |
|
| 12.9207 | 43000 | 0.0013 | 0.0026 | 0.9337 | - | |
|
| 13.0709 | 43500 | 0.0011 | 0.0025 | 0.9345 | - | |
|
| 13.2212 | 44000 | 0.0011 | 0.0026 | 0.9353 | - | |
|
| 13.3714 | 44500 | 0.0011 | 0.0025 | 0.9360 | - | |
|
| 13.5216 | 45000 | 0.001 | 0.0026 | 0.9347 | - | |
|
| 13.6719 | 45500 | 0.0011 | 0.0025 | 0.9364 | - | |
|
| 13.8221 | 46000 | 0.0011 | 0.0025 | 0.9373 | - | |
|
| 13.9724 | 46500 | 0.0011 | 0.0025 | 0.9374 | - | |
|
| 14.1226 | 47000 | 0.001 | 0.0024 | 0.9390 | - | |
|
| 14.2728 | 47500 | 0.001 | 0.0024 | 0.9389 | - | |
|
| 14.4231 | 48000 | 0.001 | 0.0024 | 0.9388 | - | |
|
| 14.5733 | 48500 | 0.001 | 0.0025 | 0.9394 | - | |
|
| 14.7236 | 49000 | 0.0009 | 0.0024 | 0.9413 | - | |
|
| 14.8738 | 49500 | 0.0009 | 0.0024 | 0.9415 | - | |
|
| 15.0240 | 50000 | 0.0009 | 0.0024 | 0.9419 | - | |
|
| 15.1743 | 50500 | 0.0009 | 0.0024 | 0.9421 | - | |
|
| 15.3245 | 51000 | 0.0009 | 0.0025 | 0.9414 | - | |
|
| 15.4748 | 51500 | 0.0008 | 0.0024 | 0.9422 | - | |
|
| 15.625 | 52000 | 0.0009 | 0.0024 | 0.9423 | - | |
|
| 15.7752 | 52500 | 0.0008 | 0.0023 | 0.9436 | - | |
|
| 15.9255 | 53000 | 0.0009 | 0.0023 | 0.9442 | - | |
|
| 16.0757 | 53500 | 0.0008 | 0.0023 | 0.9449 | - | |
|
| 16.2260 | 54000 | 0.0008 | 0.0023 | 0.9451 | - | |
|
| 16.3762 | 54500 | 0.0008 | 0.0023 | 0.9448 | - | |
|
| 16.5264 | 55000 | 0.0008 | 0.0023 | 0.9446 | - | |
|
| 16.6767 | 55500 | 0.0008 | 0.0023 | 0.9455 | - | |
|
| 16.8269 | 56000 | 0.0008 | 0.0023 | 0.9458 | - | |
|
| 16.9772 | 56500 | 0.0008 | 0.0023 | 0.9458 | - | |
|
| 17.1274 | 57000 | 0.0007 | 0.0023 | 0.9469 | - | |
|
| 17.2776 | 57500 | 0.0007 | 0.0023 | 0.9470 | - | |
|
| 17.4279 | 58000 | 0.0007 | 0.0023 | 0.9469 | - | |
|
| 17.5781 | 58500 | 0.0007 | 0.0022 | 0.9478 | - | |
|
| 17.7284 | 59000 | 0.0007 | 0.0022 | 0.9480 | - | |
|
| 17.8786 | 59500 | 0.0007 | 0.0023 | 0.9479 | - | |
|
| 18.0288 | 60000 | 0.0007 | 0.0022 | 0.9480 | - | |
|
| 18.1791 | 60500 | 0.0006 | 0.0022 | 0.9484 | - | |
|
| 18.3293 | 61000 | 0.0006 | 0.0022 | 0.9485 | - | |
|
| 18.4796 | 61500 | 0.0007 | 0.0022 | 0.9490 | - | |
|
| 18.6298 | 62000 | 0.0007 | 0.0022 | 0.9492 | - | |
|
| 18.7800 | 62500 | 0.0007 | 0.0022 | 0.9493 | - | |
|
| 18.9303 | 63000 | 0.0007 | 0.0022 | 0.9493 | - | |
|
| 19.0805 | 63500 | 0.0006 | 0.0022 | 0.9493 | - | |
|
| 19.2308 | 64000 | 0.0006 | 0.0022 | 0.9495 | - | |
|
| 19.3810 | 64500 | 0.0006 | 0.0022 | 0.9497 | - | |
|
| 19.5312 | 65000 | 0.0006 | 0.0022 | 0.9498 | - | |
|
| 19.6815 | 65500 | 0.0006 | 0.0022 | 0.9498 | - | |
|
| 19.8317 | 66000 | 0.0006 | 0.0022 | 0.9500 | - | |
|
| 19.9820 | 66500 | 0.0006 | 0.0022 | 0.9501 | - | |
|
| 20.0 | 66560 | - | - | - | 0.9513 | |
|
|
|
</details> |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.47.1 |
|
- PyTorch: 2.2.2+cu121 |
|
- Accelerate: 1.2.1 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.21.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |