|
--- |
|
license: mit |
|
base_model: facebook/mbart-large-50 |
|
tags: |
|
- simplification |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: mbart-neutralization |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mbart-neutralization |
|
|
|
This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0220 |
|
- Bleu: 98.2132 |
|
- Gen Len: 18.5417 |
|
|
|
## Model description |
|
|
|
mBART-50 is a multilingual Sequence-to-Sequence model. It was introduced to show that multilingual translation models can be created through multilingual fine-tuning. Instead of fine-tuning on one direction, a pre-trained model is fine-tuned on many directions simultaneously. mBART-50 is created using the original mBART model and extended to add extra 25 languages to support multilingual machine translation models of 50 languages. The pre-training objective is explained below. |
|
|
|
Multilingual Denoising Pretraining: The model incorporates N languages by concatenating data: D = {D1, ..., DN } where each Di is a collection of monolingual documents in language i. The source documents are noised using two schemes, first randomly shuffling the original sentences' order, and second a novel in-filling scheme, where spans of text are replaced with a single mask token. The model is then tasked to reconstruct the original text. 35% of each instance's words are masked by random sampling a span length according to a Poisson distribution (λ = 3.5). The decoder input is the original text with one position offset. A language id symbol LID is used as the initial token to predict the sentence. |
|
|
|
## Intended uses & limitations |
|
|
|
mbart-large-50 is pre-trained model and primarily aimed at being fine-tuned on translation tasks. It can also be fine-tuned on other multilingual sequence-to-sequence tasks. See the model hub to look for fine-tuned versions. |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| |
|
| No log | 1.0 | 440 | 0.0490 | 96.2659 | 19.0104 | |
|
| 0.2462 | 2.0 | 880 | 0.0220 | 98.2132 | 18.5417 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.1 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.17.1 |
|
- Tokenizers 0.15.2 |
|
|