weibo-model-4tags
This model is a fine-tuned version of bert-base-chinese on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.0245
- Accuracy: 0.7079
- Precision: 0.7101
- Recall: 0.7079
- F1: 0.7081
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
1.1091 | 0.6849 | 50 | 1.0191 | 0.5361 | 0.6449 | 0.5361 | 0.4924 |
0.7439 | 1.3699 | 100 | 0.8837 | 0.6306 | 0.6446 | 0.6306 | 0.6280 |
0.7962 | 2.0548 | 150 | 0.8365 | 0.6615 | 0.6886 | 0.6615 | 0.6567 |
0.5132 | 2.7397 | 200 | 0.8698 | 0.6890 | 0.6977 | 0.6890 | 0.6841 |
0.2886 | 3.4247 | 250 | 0.9056 | 0.7096 | 0.7103 | 0.7096 | 0.7092 |
0.1804 | 4.1096 | 300 | 0.9927 | 0.7045 | 0.7071 | 0.7045 | 0.7027 |
0.146 | 4.7945 | 350 | 1.0245 | 0.7079 | 0.7101 | 0.7079 | 0.7081 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for wsqstar/weibo-model-4tags
Base model
google-bert/bert-base-chinese