File size: 17,151 Bytes
7538df1 fe740e9 7538df1 f9ab6ed 7538df1 8920c6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
# -*- coding: utf-8 -*-
"""
Created on Fri Dec 20 09:32:12 2024
This script contains the LWM pre-training and task-specific fine-tuning functions.
@author: Sadjad Alikhani
"""
import torch
import torch.nn as nn
from tqdm import tqdm
import matplotlib.pyplot as plt
import os
import csv
from utils import count_parameters
import time
#%% LOSS FUNCTION
def nmse_loss(y_pred, y_true):
y_pred_flat = y_pred.view(y_pred.size(0), -1)
y_true_flat = y_true.view(y_true.size(0), -1)
mse = torch.sum((y_true_flat - y_pred_flat)**2, dim=-1)
normalization = torch.sum(y_true_flat**2, dim=-1)
return mse / normalization
#%%
def train_lwm(model, train_loaders, val_loaders, optimizer, scheduler, epochs, device, save_dir="models", log_file="training_log.csv"):
if not os.path.exists(save_dir):
os.makedirs(save_dir)
# Initialize CSV log
if not os.path.exists(log_file):
with open(log_file, mode='w', newline='') as file:
writer = csv.writer(file)
writer.writerow(["Epoch", "Train NMSE", "Validation NMSE", "Learning Rate", "Best Model"])
train_nmse_losses = []
val_nmse_losses = []
best_val_nmse = float('inf')
for epoch in range(epochs):
model.train()
train_nmse = 0.0
train_samples = 0
# Training loop across all buckets
print(f"\nEpoch {epoch + 1}/{epochs} [Training]")
for length, train_loader in train_loaders.items():
print(f"Processing sequences of length {length}")
with tqdm(train_loader, desc=f"Length {length} [Training]", unit="batch") as t:
for batch in t:
# train_batches += 1
optimizer.zero_grad()
# Move data to device
input_ids, masked_tokens, masked_pos = [b.to(device) for b in batch]
# Forward pass
logits_lm, _, _ = model(input_ids, masked_pos)
# Compute NMSE
loss = torch.sum(nmse_loss(masked_tokens, logits_lm))
loss.backward()
optimizer.step()
scheduler.step()
train_nmse += loss.item()
train_samples += input_ids.shape[0]
# Update progress bar
t.set_postfix({"nmse": train_nmse/train_samples, "lr": scheduler.get_last_lr()[0]})
# Average NMSE across training batches
train_nmse /= max(train_samples, 1)
train_nmse_losses.append(train_nmse)
if epoch % 2 == 0:
# Validation loop across all buckets
model.eval()
val_nmse = 0.0
val_samples = 0
with torch.no_grad():
print(f"\nEpoch {epoch + 1}/{epochs} [Validation]")
for length, val_loader in val_loaders.items():
print(f"Processing sequences of length {length}")
with tqdm(val_loader, desc=f"Length {length} [Validation]", unit="batch") as t:
for batch in t:
# val_batches += 1
# Move data to device
input_ids, masked_tokens, masked_pos = [b.to(device) for b in batch]
# Forward pass
logits_lm, _, _ = model(input_ids, masked_pos)
# Compute NMSE
loss = torch.sum(nmse_loss(masked_tokens, logits_lm))
val_nmse += loss.item()
val_samples += input_ids.shape[0]
# Update progress bar
t.set_postfix({"nmse": val_nmse/val_samples})
# Average NMSE across validation batches
val_nmse /= max(val_samples, 1)
val_nmse_losses.append(val_nmse)
# Save model if validation NMSE improves
is_best_model = False
if val_nmse < best_val_nmse:
best_val_nmse = val_nmse
model_path = os.path.join(save_dir, f"lwm_epoch{epoch+1}_train{train_nmse:.4f}_val{val_nmse:.4f}.pth")
torch.save(model.state_dict(), model_path)
print(f"Model saved: {model_path}")
is_best_model = True
# Log the results
print(f" Train NMSE: {train_nmse:.4f}")
print(f" Validation NMSE: {val_nmse:.4f}")
print(f" Learning Rate: {scheduler.get_last_lr()[0]:.6e}")
# Append to CSV log
with open(log_file, mode='a', newline='') as file:
writer = csv.writer(file)
writer.writerow([epoch + 1, train_nmse, val_nmse, scheduler.get_last_lr()[0], is_best_model])
# Plot losses after each epoch
plt.figure(figsize=(10, 6))
plt.plot(range(1, len(train_nmse_losses) + 1), train_nmse_losses, label="Train NMSE")
plt.plot(range(1, len(val_nmse_losses) + 1), val_nmse_losses, label="Validation NMSE")
plt.xlabel("Epochs")
plt.ylabel("NMSE")
plt.title("Training and Validation NMSE Loss")
plt.legend()
plt.grid(True)
plt.show()
print("Training and validation complete.")
return model
#%% FINE-TUNE
from torch.cuda.amp import GradScaler, autocast
# Define the ClassificationHead
class ClassificationHead(nn.Module):
def __init__(self, input_dim, num_classes):
super().__init__()
self.fc = nn.Linear(input_dim, num_classes)
def forward(self, x):
return self.fc(x)
# Define the RegressionHead
class RegressionHead(nn.Module):
def __init__(self, input_dim):
super().__init__()
self.fc = nn.Linear(input_dim, 1)
def forward(self, x):
return self.fc(x)
class CustomClassificationHead(nn.Module):
def __init__(self, input_dim, num_classes):
super().__init__()
self.classifier = nn.Sequential(
nn.Linear(input_dim, 512),
nn.BatchNorm1d(512),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(512, 256),
nn.BatchNorm1d(256),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(256, 128),
nn.BatchNorm1d(128),
nn.ReLU(),
# nn.Dropout(0.1),
nn.Linear(128, num_classes)
)
def forward(self, x):
return self.classifier(x)
class CustomRegressionHead(nn.Module):
def __init__(self, input_dim, output_dim):
super().__init__()
self.regressor = nn.Sequential(
nn.Linear(input_dim, 512),
nn.BatchNorm1d(512),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(512, 256),
nn.BatchNorm1d(256),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(256, output_dim)
)
def forward(self, x):
return self.regressor(x)
def custom_heads(input_dim, num_classes=None, output_dim=None, task_type="classification"):
"""
Creates a custom head for classification or regression tasks.
Users should modify the class implementations for further customization.
Args:
input_dim (int): Input dimension of the head.
num_classes (int): Number of classes for classification tasks. Ignored for regression.
task_type (str): "classification" or "regression".
Returns:
nn.Module: Custom head for the specified task.
"""
if task_type == "classification":
if num_classes is None:
raise ValueError("num_classes must be specified for classification tasks.")
return CustomClassificationHead(input_dim=input_dim, num_classes=num_classes)
elif task_type == "regression":
return CustomRegressionHead(input_dim=input_dim, output_dim=output_dim)
else:
raise ValueError("Invalid task_type. Choose 'classification' or 'regression'.")
#%%
# Fine-tuning wrapper for the base model
class FineTuningWrapper(nn.Module):
def __init__(self, model, task_head, fine_tune_layers="full"):
super().__init__()
self.model = model
self.task_head = task_head
# Freeze all layers initially
for param in self.model.parameters():
param.requires_grad = False
# Handle fine-tuning layers
if fine_tune_layers is not None:
if fine_tune_layers == "full":
# Unfreeze all layers if "all" is specified
for param in self.model.parameters():
param.requires_grad = True
else:
# Get a list of all available layer names in the model
available_layers = [name for name, _ in self.model.named_parameters()]
# Validate that specified layers exist in the model
for layer in fine_tune_layers:
if not any(layer in lname for lname in available_layers):
raise ValueError(
f"Layer '{layer}' not found in the model. "
f"Available layers: {available_layers}"
)
# Unfreeze only the specified layers
for name, param in self.model.named_parameters():
if any(layer in name for layer in fine_tune_layers):
param.requires_grad = True
def forward(self, x, input_type="cls_emb"):
if input_type == "raw":
task_input = x.view(x.size(0), -1)
else:
embeddings, attn_maps = self.model(x) # Get embeddings from the base model
if input_type == "cls_emb":
task_input = embeddings[:, 0, :] # CLS token
elif input_type == "channel_emb":
chs_emb = embeddings[:, 1:, :]
task_input = chs_emb.view(chs_emb.size(0), -1) # embeddings.mean(dim=1) # Mean pooling over channel embeddings
return self.task_head(task_input), 0 if input_type=="raw" else attn_maps
#%%
# Fine-tuning function
from sklearn.metrics import f1_score
def finetune(
base_model,
train_loader,
val_loader=None,
task_type="classification",
input_type="cls_emb",
num_classes=None,
output_dim=None,
use_custom_head=False,
fine_tune_layers=None,
optimizer_config=None,
criterion=None,
epochs=10,
device="cuda",
task="Beam Prediction"
):
"""
Configures and fine-tunes the base model with user-defined settings, saving results and models.
"""
# Create results folder
time_now = f"{time.time():.0f}"
results_folder = f"results/{task}/{time_now}"
os.makedirs(results_folder, exist_ok=True)
log_file = os.path.join(results_folder, "training_log.csv")
# Initialize the CSV log
with open(log_file, mode='w', newline='') as file:
writer = csv.writer(file)
writer.writerow(["Task", "Input", "Epoch", "Train Loss", "Validation Loss", "F1-Score (Classification)", "Learning Rate", "Time"])
for batch in val_loader:
input_data, targets = batch[0].to(device), batch[1].to(device)
break
if input_type == "cls_emb":
n_patches = 1
patch_size = 128
elif input_type == "channel_emb":
n_patches = input_data.shape[1]-1
patch_size = 128
elif input_type == "raw":
n_patches = input_data.shape[1]
patch_size = 32
# patch_size = 1
if use_custom_head:
custom_head = custom_heads(input_dim=n_patches*patch_size,
num_classes=num_classes,
output_dim=output_dim,
task_type=task_type)
# Handle DataParallel models
if isinstance(base_model, nn.DataParallel):
base_model = base_model.module
# Set up the task-specific head
if use_custom_head:
task_head = custom_head
elif task_type == "classification":
if num_classes is None:
raise ValueError("num_classes must be specified for classification tasks.")
task_head = ClassificationHead(input_dim=n_patches*patch_size, num_classes=num_classes) # input_dim=base_model.embedding.d_model
elif task_type == "regression":
task_head = RegressionHead(input_dim=n_patches*patch_size) # input_dim=base_model.embedding.d_model
else:
raise ValueError("Invalid task_type. Choose 'classification' or 'regression'.")
# Wrap the model with the fine-tuning head
wrapper = FineTuningWrapper(base_model, task_head, fine_tune_layers=fine_tune_layers)
wrapper = wrapper.to(device)
print(f'Number of head parameters: {count_parameters(wrapper)}')
# Set default optimizer config if not provided
if optimizer_config is None:
optimizer_config = {"lr": 1e-4}
# Set up the optimizer
optimizer = torch.optim.Adam(wrapper.parameters(), **optimizer_config)
# Set up the scheduler for learning rate decay
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.8) # Example: Reduce LR by 10x every 10 epochs
# Set up the loss criterion
if criterion is None:
criterion = nn.CrossEntropyLoss() if task_type == "classification" else nn.MSELoss()
scaler = GradScaler()
train_losses, val_losses, f1_scores = [], [], []
best_val_loss = float("inf")
best_model_path = None
for epoch in range(epochs):
# Training loop
wrapper.train()
epoch_loss = 0.0
with tqdm(train_loader, desc=f"Epoch {epoch + 1}/{epochs}") as progress_bar:
for batch in progress_bar:
input_data, targets = batch[0].to(device), batch[1].to(device)
optimizer.zero_grad()
with autocast():
outputs, attn_maps = wrapper(input_data, input_type=input_type)
loss = criterion(outputs, targets)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
epoch_loss += loss.item()
progress_bar.set_postfix({"Loss": loss.item()})
avg_train_loss = epoch_loss / len(train_loader)
train_losses.append(avg_train_loss)
# Validation loop
if val_loader:
wrapper.eval()
val_loss = 0.0
all_preds, all_targets = [], []
with torch.no_grad():
for batch in val_loader:
input_data, targets = batch[0].to(device), batch[1].to(device)
with autocast():
outputs, _ = wrapper(input_data, input_type=input_type)
loss = criterion(outputs, targets)
val_loss += loss.item()
if task_type == "classification":
preds = torch.argmax(outputs, dim=1).cpu().numpy()
all_preds.extend(preds)
all_targets.extend(targets.cpu().numpy())
avg_val_loss = val_loss / len(val_loader)
val_losses.append(avg_val_loss)
time_now = f"{time.time():.0f}"
# Save the best model
if avg_val_loss < best_val_loss:
best_val_loss = avg_val_loss
best_model_path = os.path.join(results_folder, f"{input_type}_epoch{epoch+1}_valLoss{avg_val_loss:.4f}_{time_now}.pth")
torch.save(wrapper.state_dict(), best_model_path)
print(f"Model saved at {best_model_path} with validation loss: {best_val_loss:.4f}")
# Compute F1-score for classification tasks
f1 = None
if task_type == "classification":
f1 = f1_score(all_targets, all_preds, average="weighted")
print(f"Epoch {epoch + 1}, Validation F1-Score: {f1:.4f}")
f1_scores.append(f1)
scheduler.step()
# Log results
with open(log_file, mode='a', newline='') as file:
writer = csv.writer(file)
writer.writerow([task, input_type, epoch + 1, avg_train_loss, avg_val_loss, f1 if f1 is not None else "-", scheduler.get_last_lr()[0], f"{time_now}"])
# Plot training and validation losses
plt.figure(figsize=(10, 6))
plt.plot(range(1, epochs + 1), train_losses, label="Training Loss")
plt.plot(range(1, epochs + 1), val_losses, label="Validation Loss", linestyle="--")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.title("Training and Validation Loss")
plt.legend()
plt.grid(True)
# plt.savefig(os.path.join(results_folder, "loss_curve.png"))
plt.show()
return wrapper, best_model_path, train_losses, val_losses, f1_scores if task_type == "classification" else 0, attn_maps |