Update train.py
Browse files
train.py
CHANGED
|
@@ -1,446 +1,446 @@
|
|
| 1 |
-
# -*- coding: utf-8 -*-
|
| 2 |
-
"""
|
| 3 |
-
Created on Fri Dec 20 09:32:12 2024
|
| 4 |
-
|
| 5 |
-
This script contains the LWM pre-training and task-specific fine-tuning functions.
|
| 6 |
-
|
| 7 |
-
@author: Sadjad Alikhani
|
| 8 |
-
"""
|
| 9 |
-
import torch
|
| 10 |
-
import torch.nn as nn
|
| 11 |
-
from tqdm import tqdm
|
| 12 |
-
import matplotlib.pyplot as plt
|
| 13 |
-
import os
|
| 14 |
-
import csv
|
| 15 |
-
from utils import count_parameters
|
| 16 |
-
import time
|
| 17 |
-
#%% LOSS FUNCTION
|
| 18 |
-
def nmse_loss(y_pred, y_true):
|
| 19 |
-
y_pred_flat = y_pred.view(y_pred.size(0), -1)
|
| 20 |
-
y_true_flat = y_true.view(y_true.size(0), -1)
|
| 21 |
-
mse = torch.sum((y_true_flat - y_pred_flat)**2, dim=-1)
|
| 22 |
-
normalization = torch.sum(y_true_flat**2, dim=-1)
|
| 23 |
-
return mse / normalization
|
| 24 |
-
#%%
|
| 25 |
-
def train_lwm(model, train_loaders, val_loaders, optimizer, scheduler, epochs, device, save_dir="models", log_file="training_log.csv"):
|
| 26 |
-
|
| 27 |
-
if not os.path.exists(save_dir):
|
| 28 |
-
os.makedirs(save_dir)
|
| 29 |
-
|
| 30 |
-
# Initialize CSV log
|
| 31 |
-
if not os.path.exists(log_file):
|
| 32 |
-
with open(log_file, mode='w', newline='') as file:
|
| 33 |
-
writer = csv.writer(file)
|
| 34 |
-
writer.writerow(["Epoch", "Train NMSE", "Validation NMSE", "Learning Rate", "Best Model"])
|
| 35 |
-
|
| 36 |
-
train_nmse_losses = []
|
| 37 |
-
val_nmse_losses = []
|
| 38 |
-
best_val_nmse = float('inf')
|
| 39 |
-
|
| 40 |
-
for epoch in range(epochs):
|
| 41 |
-
model.train()
|
| 42 |
-
train_nmse = 0.0
|
| 43 |
-
train_samples = 0
|
| 44 |
-
|
| 45 |
-
# Training loop across all buckets
|
| 46 |
-
print(f"\nEpoch {epoch + 1}/{epochs} [Training]")
|
| 47 |
-
for length, train_loader in train_loaders.items():
|
| 48 |
-
print(f"Processing sequences of length {length}")
|
| 49 |
-
with tqdm(train_loader, desc=f"Length {length} [Training]", unit="batch") as t:
|
| 50 |
-
for batch in t:
|
| 51 |
-
# train_batches += 1
|
| 52 |
-
optimizer.zero_grad()
|
| 53 |
-
|
| 54 |
-
# Move data to device
|
| 55 |
-
input_ids, masked_tokens, masked_pos = [b.to(device) for b in batch]
|
| 56 |
-
|
| 57 |
-
# Forward pass
|
| 58 |
-
logits_lm, _, _ = model(input_ids, masked_pos)
|
| 59 |
-
|
| 60 |
-
# Compute NMSE
|
| 61 |
-
loss = torch.sum(nmse_loss(masked_tokens, logits_lm))
|
| 62 |
-
loss.backward()
|
| 63 |
-
optimizer.step()
|
| 64 |
-
scheduler.step()
|
| 65 |
-
|
| 66 |
-
train_nmse += loss.item()
|
| 67 |
-
train_samples += input_ids.shape[0]
|
| 68 |
-
|
| 69 |
-
# Update progress bar
|
| 70 |
-
t.set_postfix({"nmse": train_nmse/train_samples, "lr": scheduler.get_last_lr()[0]})
|
| 71 |
-
|
| 72 |
-
# Average NMSE across training batches
|
| 73 |
-
train_nmse /= max(train_samples, 1)
|
| 74 |
-
train_nmse_losses.append(train_nmse)
|
| 75 |
-
|
| 76 |
-
if epoch % 2 == 0:
|
| 77 |
-
# Validation loop across all buckets
|
| 78 |
-
model.eval()
|
| 79 |
-
val_nmse = 0.0
|
| 80 |
-
val_samples = 0
|
| 81 |
-
with torch.no_grad():
|
| 82 |
-
print(f"\nEpoch {epoch + 1}/{epochs} [Validation]")
|
| 83 |
-
for length, val_loader in val_loaders.items():
|
| 84 |
-
print(f"Processing sequences of length {length}")
|
| 85 |
-
with tqdm(val_loader, desc=f"Length {length} [Validation]", unit="batch") as t:
|
| 86 |
-
for batch in t:
|
| 87 |
-
# val_batches += 1
|
| 88 |
-
|
| 89 |
-
# Move data to device
|
| 90 |
-
input_ids, masked_tokens, masked_pos = [b.to(device) for b in batch]
|
| 91 |
-
|
| 92 |
-
# Forward pass
|
| 93 |
-
logits_lm, _, _ = model(input_ids, masked_pos)
|
| 94 |
-
|
| 95 |
-
# Compute NMSE
|
| 96 |
-
loss = torch.sum(nmse_loss(masked_tokens, logits_lm))
|
| 97 |
-
val_nmse += loss.item()
|
| 98 |
-
val_samples += input_ids.shape[0]
|
| 99 |
-
|
| 100 |
-
# Update progress bar
|
| 101 |
-
t.set_postfix({"nmse": val_nmse/val_samples})
|
| 102 |
-
|
| 103 |
-
# Average NMSE across validation batches
|
| 104 |
-
val_nmse /= max(val_samples, 1)
|
| 105 |
-
val_nmse_losses.append(val_nmse)
|
| 106 |
-
|
| 107 |
-
# Save model if validation NMSE improves
|
| 108 |
-
is_best_model = False
|
| 109 |
-
if val_nmse < best_val_nmse:
|
| 110 |
-
best_val_nmse = val_nmse
|
| 111 |
-
model_path = os.path.join(save_dir, f"lwm_epoch{epoch+1}_train{train_nmse:.4f}_val{val_nmse:.4f}.pth")
|
| 112 |
-
torch.save(model.state_dict(), model_path)
|
| 113 |
-
print(f"Model saved: {model_path}")
|
| 114 |
-
is_best_model = True
|
| 115 |
-
|
| 116 |
-
# Log the results
|
| 117 |
-
print(f" Train NMSE: {train_nmse:.4f}")
|
| 118 |
-
print(f" Validation NMSE: {val_nmse:.4f}")
|
| 119 |
-
print(f" Learning Rate: {scheduler.get_last_lr()[0]:.6e}")
|
| 120 |
-
|
| 121 |
-
# Append to CSV log
|
| 122 |
-
with open(log_file, mode='a', newline='') as file:
|
| 123 |
-
writer = csv.writer(file)
|
| 124 |
-
writer.writerow([epoch + 1, train_nmse, val_nmse, scheduler.get_last_lr()[0], is_best_model])
|
| 125 |
-
|
| 126 |
-
# Plot losses after each epoch
|
| 127 |
-
plt.figure(figsize=(10, 6))
|
| 128 |
-
plt.plot(range(1, len(train_nmse_losses) + 1), train_nmse_losses, label="Train NMSE")
|
| 129 |
-
plt.plot(range(1, len(val_nmse_losses) + 1), val_nmse_losses, label="Validation NMSE")
|
| 130 |
-
plt.xlabel("Epochs")
|
| 131 |
-
plt.ylabel("NMSE")
|
| 132 |
-
plt.title("Training and Validation NMSE Loss")
|
| 133 |
-
plt.legend()
|
| 134 |
-
plt.grid(True)
|
| 135 |
-
plt.show()
|
| 136 |
-
|
| 137 |
-
print("Training and validation complete.")
|
| 138 |
-
return model
|
| 139 |
-
#%% FINE-TUNE
|
| 140 |
-
from torch.cuda.amp import GradScaler, autocast
|
| 141 |
-
|
| 142 |
-
# Define the ClassificationHead
|
| 143 |
-
class ClassificationHead(nn.Module):
|
| 144 |
-
def __init__(self, input_dim, num_classes):
|
| 145 |
-
super().__init__()
|
| 146 |
-
self.fc = nn.Linear(input_dim, num_classes)
|
| 147 |
-
|
| 148 |
-
def forward(self, x):
|
| 149 |
-
return self.fc(x)
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
# Define the RegressionHead
|
| 153 |
-
class RegressionHead(nn.Module):
|
| 154 |
-
def __init__(self, input_dim):
|
| 155 |
-
super().__init__()
|
| 156 |
-
self.fc = nn.Linear(input_dim, 1)
|
| 157 |
-
|
| 158 |
-
def forward(self, x):
|
| 159 |
-
return self.fc(x)
|
| 160 |
-
|
| 161 |
-
class CustomClassificationHead(nn.Module):
|
| 162 |
-
def __init__(self, input_dim, num_classes):
|
| 163 |
-
|
| 164 |
-
super().__init__()
|
| 165 |
-
self.classifier = nn.Sequential(
|
| 166 |
-
nn.Linear(input_dim, 512),
|
| 167 |
-
nn.BatchNorm1d(512),
|
| 168 |
-
nn.ReLU(),
|
| 169 |
-
nn.Dropout(0.1),
|
| 170 |
-
nn.Linear(512, 256),
|
| 171 |
-
nn.BatchNorm1d(256),
|
| 172 |
-
nn.ReLU(),
|
| 173 |
-
nn.Dropout(0.1),
|
| 174 |
-
nn.Linear(256, 128),
|
| 175 |
-
nn.BatchNorm1d(128),
|
| 176 |
-
nn.ReLU(),
|
| 177 |
-
# nn.Dropout(0.1),
|
| 178 |
-
nn.Linear(128, num_classes)
|
| 179 |
-
)
|
| 180 |
-
|
| 181 |
-
def forward(self, x):
|
| 182 |
-
return self.classifier(x)
|
| 183 |
-
|
| 184 |
-
class CustomRegressionHead(nn.Module):
|
| 185 |
-
def __init__(self, input_dim, output_dim):
|
| 186 |
-
|
| 187 |
-
super().__init__()
|
| 188 |
-
self.regressor = nn.Sequential(
|
| 189 |
-
nn.Linear(input_dim, 512),
|
| 190 |
-
nn.BatchNorm1d(512),
|
| 191 |
-
nn.ReLU(),
|
| 192 |
-
nn.Dropout(0.1),
|
| 193 |
-
nn.Linear(512, 256),
|
| 194 |
-
nn.BatchNorm1d(256),
|
| 195 |
-
nn.ReLU(),
|
| 196 |
-
nn.Dropout(0.1),
|
| 197 |
-
nn.Linear(256, output_dim)
|
| 198 |
-
)
|
| 199 |
-
|
| 200 |
-
def forward(self, x):
|
| 201 |
-
return self.regressor(x)
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
def custom_heads(input_dim, num_classes=None, output_dim=None, task_type="classification"):
|
| 205 |
-
"""
|
| 206 |
-
Creates a custom head for classification or regression tasks.
|
| 207 |
-
Users should modify the class implementations for further customization.
|
| 208 |
-
|
| 209 |
-
Args:
|
| 210 |
-
input_dim (int): Input dimension of the head.
|
| 211 |
-
num_classes (int): Number of classes for classification tasks. Ignored for regression.
|
| 212 |
-
task_type (str): "classification" or "regression".
|
| 213 |
-
|
| 214 |
-
Returns:
|
| 215 |
-
nn.Module: Custom head for the specified task.
|
| 216 |
-
"""
|
| 217 |
-
if task_type == "classification":
|
| 218 |
-
if num_classes is None:
|
| 219 |
-
raise ValueError("num_classes must be specified for classification tasks.")
|
| 220 |
-
return CustomClassificationHead(input_dim=input_dim, num_classes=num_classes)
|
| 221 |
-
elif task_type == "regression":
|
| 222 |
-
return CustomRegressionHead(input_dim=input_dim, output_dim=output_dim)
|
| 223 |
-
else:
|
| 224 |
-
raise ValueError("Invalid task_type. Choose 'classification' or 'regression'.")
|
| 225 |
-
#%%
|
| 226 |
-
# Fine-tuning wrapper for the base model
|
| 227 |
-
class FineTuningWrapper(nn.Module):
|
| 228 |
-
def __init__(self, model, task_head, fine_tune_layers="full"):
|
| 229 |
-
super().__init__()
|
| 230 |
-
self.model = model
|
| 231 |
-
self.task_head = task_head
|
| 232 |
-
|
| 233 |
-
# Freeze all layers initially
|
| 234 |
-
for param in self.model.parameters():
|
| 235 |
-
param.requires_grad = False
|
| 236 |
-
|
| 237 |
-
# Handle fine-tuning layers
|
| 238 |
-
if fine_tune_layers is not None:
|
| 239 |
-
if fine_tune_layers == "full":
|
| 240 |
-
# Unfreeze all layers if "all" is specified
|
| 241 |
-
for param in self.model.parameters():
|
| 242 |
-
param.requires_grad = True
|
| 243 |
-
else:
|
| 244 |
-
# Get a list of all available layer names in the model
|
| 245 |
-
available_layers = [name for name, _ in self.model.named_parameters()]
|
| 246 |
-
|
| 247 |
-
# Validate that specified layers exist in the model
|
| 248 |
-
for layer in fine_tune_layers:
|
| 249 |
-
if not any(layer in lname for lname in available_layers):
|
| 250 |
-
raise ValueError(
|
| 251 |
-
f"Layer '{layer}' not found in the model. "
|
| 252 |
-
f"Available layers: {available_layers}"
|
| 253 |
-
)
|
| 254 |
-
|
| 255 |
-
# Unfreeze only the specified layers
|
| 256 |
-
for name, param in self.model.named_parameters():
|
| 257 |
-
if any(layer in name for layer in fine_tune_layers):
|
| 258 |
-
param.requires_grad = True
|
| 259 |
-
|
| 260 |
-
def forward(self, x, input_type="cls_emb"):
|
| 261 |
-
if input_type == "raw":
|
| 262 |
-
task_input = x.view(x.size(0), -1)
|
| 263 |
-
else:
|
| 264 |
-
embeddings, attn_maps = self.model(x) # Get embeddings from the base model
|
| 265 |
-
if input_type == "cls_emb":
|
| 266 |
-
task_input = embeddings[:, 0, :] # CLS token
|
| 267 |
-
elif input_type == "
|
| 268 |
-
chs_emb = embeddings[:, 1:, :]
|
| 269 |
-
task_input = chs_emb.view(chs_emb.size(0), -1) # embeddings.mean(dim=1) # Mean pooling over channel embeddings
|
| 270 |
-
|
| 271 |
-
return self.task_head(task_input), 0 if input_type=="raw" else attn_maps
|
| 272 |
-
#%%
|
| 273 |
-
# Fine-tuning function
|
| 274 |
-
from sklearn.metrics import f1_score
|
| 275 |
-
def finetune(
|
| 276 |
-
base_model,
|
| 277 |
-
train_loader,
|
| 278 |
-
val_loader=None,
|
| 279 |
-
task_type="classification",
|
| 280 |
-
input_type="cls_emb",
|
| 281 |
-
num_classes=None,
|
| 282 |
-
output_dim=None,
|
| 283 |
-
use_custom_head=False,
|
| 284 |
-
fine_tune_layers=None,
|
| 285 |
-
optimizer_config=None,
|
| 286 |
-
criterion=None,
|
| 287 |
-
epochs=10,
|
| 288 |
-
device="cuda",
|
| 289 |
-
task="Beam Prediction"
|
| 290 |
-
):
|
| 291 |
-
"""
|
| 292 |
-
Configures and fine-tunes the base model with user-defined settings, saving results and models.
|
| 293 |
-
"""
|
| 294 |
-
# Create results folder
|
| 295 |
-
time_now = f"{time.time():.0f}"
|
| 296 |
-
results_folder = f"results/{task}/{time_now}"
|
| 297 |
-
os.makedirs(results_folder, exist_ok=True)
|
| 298 |
-
log_file = os.path.join(results_folder, "training_log.csv")
|
| 299 |
-
|
| 300 |
-
# Initialize the CSV log
|
| 301 |
-
with open(log_file, mode='w', newline='') as file:
|
| 302 |
-
writer = csv.writer(file)
|
| 303 |
-
writer.writerow(["Task", "Input", "Epoch", "Train Loss", "Validation Loss", "F1-Score (Classification)", "Learning Rate", "Time"])
|
| 304 |
-
|
| 305 |
-
for batch in val_loader:
|
| 306 |
-
input_data, targets = batch[0].to(device), batch[1].to(device)
|
| 307 |
-
break
|
| 308 |
-
|
| 309 |
-
if input_type == "cls_emb":
|
| 310 |
-
n_patches = 1
|
| 311 |
-
patch_size = 128
|
| 312 |
-
elif input_type == "channel_emb":
|
| 313 |
-
n_patches = input_data.shape[1]-1
|
| 314 |
-
patch_size = 128
|
| 315 |
-
elif input_type == "raw":
|
| 316 |
-
n_patches = input_data.shape[1]
|
| 317 |
-
patch_size = 32
|
| 318 |
-
# patch_size = 1
|
| 319 |
-
|
| 320 |
-
if use_custom_head:
|
| 321 |
-
custom_head = custom_heads(input_dim=n_patches*patch_size,
|
| 322 |
-
num_classes=num_classes,
|
| 323 |
-
output_dim=output_dim,
|
| 324 |
-
task_type=task_type)
|
| 325 |
-
|
| 326 |
-
# Handle DataParallel models
|
| 327 |
-
if isinstance(base_model, nn.DataParallel):
|
| 328 |
-
base_model = base_model.module
|
| 329 |
-
|
| 330 |
-
# Set up the task-specific head
|
| 331 |
-
if use_custom_head:
|
| 332 |
-
task_head = custom_head
|
| 333 |
-
elif task_type == "classification":
|
| 334 |
-
if num_classes is None:
|
| 335 |
-
raise ValueError("num_classes must be specified for classification tasks.")
|
| 336 |
-
task_head = ClassificationHead(input_dim=n_patches*patch_size, num_classes=num_classes) # input_dim=base_model.embedding.d_model
|
| 337 |
-
elif task_type == "regression":
|
| 338 |
-
task_head = RegressionHead(input_dim=n_patches*patch_size) # input_dim=base_model.embedding.d_model
|
| 339 |
-
else:
|
| 340 |
-
raise ValueError("Invalid task_type. Choose 'classification' or 'regression'.")
|
| 341 |
-
|
| 342 |
-
# Wrap the model with the fine-tuning head
|
| 343 |
-
wrapper = FineTuningWrapper(base_model, task_head, fine_tune_layers=fine_tune_layers)
|
| 344 |
-
wrapper = wrapper.to(device)
|
| 345 |
-
|
| 346 |
-
print(f'Number of head parameters: {count_parameters(wrapper)}')
|
| 347 |
-
|
| 348 |
-
# Set default optimizer config if not provided
|
| 349 |
-
if optimizer_config is None:
|
| 350 |
-
optimizer_config = {"lr": 1e-4}
|
| 351 |
-
# Set up the optimizer
|
| 352 |
-
optimizer = torch.optim.Adam(wrapper.parameters(), **optimizer_config)
|
| 353 |
-
# Set up the scheduler for learning rate decay
|
| 354 |
-
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.2) # Example: Reduce LR by 10x every 10 epochs
|
| 355 |
-
|
| 356 |
-
# Set up the loss criterion
|
| 357 |
-
if criterion is None:
|
| 358 |
-
criterion = nn.CrossEntropyLoss() if task_type == "classification" else nn.MSELoss()
|
| 359 |
-
|
| 360 |
-
scaler = GradScaler()
|
| 361 |
-
train_losses, val_losses, f1_scores = [], [], []
|
| 362 |
-
best_val_loss = float("inf")
|
| 363 |
-
best_model_path = None
|
| 364 |
-
|
| 365 |
-
for epoch in range(epochs):
|
| 366 |
-
# Training loop
|
| 367 |
-
wrapper.train()
|
| 368 |
-
epoch_loss = 0.0
|
| 369 |
-
|
| 370 |
-
with tqdm(train_loader, desc=f"Epoch {epoch + 1}/{epochs}") as progress_bar:
|
| 371 |
-
for batch in progress_bar:
|
| 372 |
-
input_data, targets = batch[0].to(device), batch[1].to(device)
|
| 373 |
-
optimizer.zero_grad()
|
| 374 |
-
|
| 375 |
-
with autocast():
|
| 376 |
-
outputs, attn_maps = wrapper(input_data, input_type=input_type)
|
| 377 |
-
loss = criterion(outputs, targets)
|
| 378 |
-
|
| 379 |
-
scaler.scale(loss).backward()
|
| 380 |
-
scaler.step(optimizer)
|
| 381 |
-
scaler.update()
|
| 382 |
-
|
| 383 |
-
epoch_loss += loss.item()
|
| 384 |
-
progress_bar.set_postfix({"Loss": loss.item()})
|
| 385 |
-
|
| 386 |
-
avg_train_loss = epoch_loss / len(train_loader)
|
| 387 |
-
train_losses.append(avg_train_loss)
|
| 388 |
-
|
| 389 |
-
# Validation loop
|
| 390 |
-
if val_loader:
|
| 391 |
-
wrapper.eval()
|
| 392 |
-
val_loss = 0.0
|
| 393 |
-
all_preds, all_targets = [], []
|
| 394 |
-
|
| 395 |
-
with torch.no_grad():
|
| 396 |
-
for batch in val_loader:
|
| 397 |
-
input_data, targets = batch[0].to(device), batch[1].to(device)
|
| 398 |
-
with autocast():
|
| 399 |
-
outputs, _ = wrapper(input_data, input_type=input_type)
|
| 400 |
-
loss = criterion(outputs, targets)
|
| 401 |
-
|
| 402 |
-
val_loss += loss.item()
|
| 403 |
-
|
| 404 |
-
if task_type == "classification":
|
| 405 |
-
preds = torch.argmax(outputs, dim=1).cpu().numpy()
|
| 406 |
-
all_preds.extend(preds)
|
| 407 |
-
all_targets.extend(targets.cpu().numpy())
|
| 408 |
-
|
| 409 |
-
avg_val_loss = val_loss / len(val_loader)
|
| 410 |
-
val_losses.append(avg_val_loss)
|
| 411 |
-
|
| 412 |
-
time_now = f"{time.time():.0f}"
|
| 413 |
-
# Save the best model
|
| 414 |
-
if avg_val_loss < best_val_loss:
|
| 415 |
-
best_val_loss = avg_val_loss
|
| 416 |
-
best_model_path = os.path.join(results_folder, f"{input_type}_epoch{epoch+1}_valLoss{avg_val_loss:.4f}_{time_now}.pth")
|
| 417 |
-
torch.save(wrapper.state_dict(), best_model_path)
|
| 418 |
-
print(f"Model saved at {best_model_path} with validation loss: {best_val_loss:.4f}")
|
| 419 |
-
|
| 420 |
-
# Compute F1-score for classification tasks
|
| 421 |
-
f1 = None
|
| 422 |
-
if task_type == "classification":
|
| 423 |
-
f1 = f1_score(all_targets, all_preds, average="macro")
|
| 424 |
-
print(f"Epoch {epoch + 1}, Validation F1-Score: {f1:.4f}")
|
| 425 |
-
f1_scores.append(f1)
|
| 426 |
-
|
| 427 |
-
scheduler.step()
|
| 428 |
-
|
| 429 |
-
# Log results
|
| 430 |
-
with open(log_file, mode='a', newline='') as file:
|
| 431 |
-
writer = csv.writer(file)
|
| 432 |
-
writer.writerow([task, input_type, epoch + 1, avg_train_loss, avg_val_loss, f1 if f1 is not None else "-", scheduler.get_last_lr()[0], f"{time_now}"])
|
| 433 |
-
|
| 434 |
-
# Plot training and validation losses
|
| 435 |
-
plt.figure(figsize=(10, 6))
|
| 436 |
-
plt.plot(range(1, epochs + 1), train_losses, label="Training Loss")
|
| 437 |
-
plt.plot(range(1, epochs + 1), val_losses, label="Validation Loss", linestyle="--")
|
| 438 |
-
plt.xlabel("Epochs")
|
| 439 |
-
plt.ylabel("Loss")
|
| 440 |
-
plt.title("Training and Validation Loss")
|
| 441 |
-
plt.legend()
|
| 442 |
-
plt.grid(True)
|
| 443 |
-
# plt.savefig(os.path.join(results_folder, "loss_curve.png"))
|
| 444 |
-
plt.show()
|
| 445 |
-
|
| 446 |
return wrapper, best_model_path, train_losses, val_losses, f1_scores if task_type == "classification" else 0, attn_maps
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""
|
| 3 |
+
Created on Fri Dec 20 09:32:12 2024
|
| 4 |
+
|
| 5 |
+
This script contains the LWM pre-training and task-specific fine-tuning functions.
|
| 6 |
+
|
| 7 |
+
@author: Sadjad Alikhani
|
| 8 |
+
"""
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
from tqdm import tqdm
|
| 12 |
+
import matplotlib.pyplot as plt
|
| 13 |
+
import os
|
| 14 |
+
import csv
|
| 15 |
+
from utils import count_parameters
|
| 16 |
+
import time
|
| 17 |
+
#%% LOSS FUNCTION
|
| 18 |
+
def nmse_loss(y_pred, y_true):
|
| 19 |
+
y_pred_flat = y_pred.view(y_pred.size(0), -1)
|
| 20 |
+
y_true_flat = y_true.view(y_true.size(0), -1)
|
| 21 |
+
mse = torch.sum((y_true_flat - y_pred_flat)**2, dim=-1)
|
| 22 |
+
normalization = torch.sum(y_true_flat**2, dim=-1)
|
| 23 |
+
return mse / normalization
|
| 24 |
+
#%%
|
| 25 |
+
def train_lwm(model, train_loaders, val_loaders, optimizer, scheduler, epochs, device, save_dir="models", log_file="training_log.csv"):
|
| 26 |
+
|
| 27 |
+
if not os.path.exists(save_dir):
|
| 28 |
+
os.makedirs(save_dir)
|
| 29 |
+
|
| 30 |
+
# Initialize CSV log
|
| 31 |
+
if not os.path.exists(log_file):
|
| 32 |
+
with open(log_file, mode='w', newline='') as file:
|
| 33 |
+
writer = csv.writer(file)
|
| 34 |
+
writer.writerow(["Epoch", "Train NMSE", "Validation NMSE", "Learning Rate", "Best Model"])
|
| 35 |
+
|
| 36 |
+
train_nmse_losses = []
|
| 37 |
+
val_nmse_losses = []
|
| 38 |
+
best_val_nmse = float('inf')
|
| 39 |
+
|
| 40 |
+
for epoch in range(epochs):
|
| 41 |
+
model.train()
|
| 42 |
+
train_nmse = 0.0
|
| 43 |
+
train_samples = 0
|
| 44 |
+
|
| 45 |
+
# Training loop across all buckets
|
| 46 |
+
print(f"\nEpoch {epoch + 1}/{epochs} [Training]")
|
| 47 |
+
for length, train_loader in train_loaders.items():
|
| 48 |
+
print(f"Processing sequences of length {length}")
|
| 49 |
+
with tqdm(train_loader, desc=f"Length {length} [Training]", unit="batch") as t:
|
| 50 |
+
for batch in t:
|
| 51 |
+
# train_batches += 1
|
| 52 |
+
optimizer.zero_grad()
|
| 53 |
+
|
| 54 |
+
# Move data to device
|
| 55 |
+
input_ids, masked_tokens, masked_pos = [b.to(device) for b in batch]
|
| 56 |
+
|
| 57 |
+
# Forward pass
|
| 58 |
+
logits_lm, _, _ = model(input_ids, masked_pos)
|
| 59 |
+
|
| 60 |
+
# Compute NMSE
|
| 61 |
+
loss = torch.sum(nmse_loss(masked_tokens, logits_lm))
|
| 62 |
+
loss.backward()
|
| 63 |
+
optimizer.step()
|
| 64 |
+
scheduler.step()
|
| 65 |
+
|
| 66 |
+
train_nmse += loss.item()
|
| 67 |
+
train_samples += input_ids.shape[0]
|
| 68 |
+
|
| 69 |
+
# Update progress bar
|
| 70 |
+
t.set_postfix({"nmse": train_nmse/train_samples, "lr": scheduler.get_last_lr()[0]})
|
| 71 |
+
|
| 72 |
+
# Average NMSE across training batches
|
| 73 |
+
train_nmse /= max(train_samples, 1)
|
| 74 |
+
train_nmse_losses.append(train_nmse)
|
| 75 |
+
|
| 76 |
+
if epoch % 2 == 0:
|
| 77 |
+
# Validation loop across all buckets
|
| 78 |
+
model.eval()
|
| 79 |
+
val_nmse = 0.0
|
| 80 |
+
val_samples = 0
|
| 81 |
+
with torch.no_grad():
|
| 82 |
+
print(f"\nEpoch {epoch + 1}/{epochs} [Validation]")
|
| 83 |
+
for length, val_loader in val_loaders.items():
|
| 84 |
+
print(f"Processing sequences of length {length}")
|
| 85 |
+
with tqdm(val_loader, desc=f"Length {length} [Validation]", unit="batch") as t:
|
| 86 |
+
for batch in t:
|
| 87 |
+
# val_batches += 1
|
| 88 |
+
|
| 89 |
+
# Move data to device
|
| 90 |
+
input_ids, masked_tokens, masked_pos = [b.to(device) for b in batch]
|
| 91 |
+
|
| 92 |
+
# Forward pass
|
| 93 |
+
logits_lm, _, _ = model(input_ids, masked_pos)
|
| 94 |
+
|
| 95 |
+
# Compute NMSE
|
| 96 |
+
loss = torch.sum(nmse_loss(masked_tokens, logits_lm))
|
| 97 |
+
val_nmse += loss.item()
|
| 98 |
+
val_samples += input_ids.shape[0]
|
| 99 |
+
|
| 100 |
+
# Update progress bar
|
| 101 |
+
t.set_postfix({"nmse": val_nmse/val_samples})
|
| 102 |
+
|
| 103 |
+
# Average NMSE across validation batches
|
| 104 |
+
val_nmse /= max(val_samples, 1)
|
| 105 |
+
val_nmse_losses.append(val_nmse)
|
| 106 |
+
|
| 107 |
+
# Save model if validation NMSE improves
|
| 108 |
+
is_best_model = False
|
| 109 |
+
if val_nmse < best_val_nmse:
|
| 110 |
+
best_val_nmse = val_nmse
|
| 111 |
+
model_path = os.path.join(save_dir, f"lwm_epoch{epoch+1}_train{train_nmse:.4f}_val{val_nmse:.4f}.pth")
|
| 112 |
+
torch.save(model.state_dict(), model_path)
|
| 113 |
+
print(f"Model saved: {model_path}")
|
| 114 |
+
is_best_model = True
|
| 115 |
+
|
| 116 |
+
# Log the results
|
| 117 |
+
print(f" Train NMSE: {train_nmse:.4f}")
|
| 118 |
+
print(f" Validation NMSE: {val_nmse:.4f}")
|
| 119 |
+
print(f" Learning Rate: {scheduler.get_last_lr()[0]:.6e}")
|
| 120 |
+
|
| 121 |
+
# Append to CSV log
|
| 122 |
+
with open(log_file, mode='a', newline='') as file:
|
| 123 |
+
writer = csv.writer(file)
|
| 124 |
+
writer.writerow([epoch + 1, train_nmse, val_nmse, scheduler.get_last_lr()[0], is_best_model])
|
| 125 |
+
|
| 126 |
+
# Plot losses after each epoch
|
| 127 |
+
plt.figure(figsize=(10, 6))
|
| 128 |
+
plt.plot(range(1, len(train_nmse_losses) + 1), train_nmse_losses, label="Train NMSE")
|
| 129 |
+
plt.plot(range(1, len(val_nmse_losses) + 1), val_nmse_losses, label="Validation NMSE")
|
| 130 |
+
plt.xlabel("Epochs")
|
| 131 |
+
plt.ylabel("NMSE")
|
| 132 |
+
plt.title("Training and Validation NMSE Loss")
|
| 133 |
+
plt.legend()
|
| 134 |
+
plt.grid(True)
|
| 135 |
+
plt.show()
|
| 136 |
+
|
| 137 |
+
print("Training and validation complete.")
|
| 138 |
+
return model
|
| 139 |
+
#%% FINE-TUNE
|
| 140 |
+
from torch.cuda.amp import GradScaler, autocast
|
| 141 |
+
|
| 142 |
+
# Define the ClassificationHead
|
| 143 |
+
class ClassificationHead(nn.Module):
|
| 144 |
+
def __init__(self, input_dim, num_classes):
|
| 145 |
+
super().__init__()
|
| 146 |
+
self.fc = nn.Linear(input_dim, num_classes)
|
| 147 |
+
|
| 148 |
+
def forward(self, x):
|
| 149 |
+
return self.fc(x)
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
# Define the RegressionHead
|
| 153 |
+
class RegressionHead(nn.Module):
|
| 154 |
+
def __init__(self, input_dim):
|
| 155 |
+
super().__init__()
|
| 156 |
+
self.fc = nn.Linear(input_dim, 1)
|
| 157 |
+
|
| 158 |
+
def forward(self, x):
|
| 159 |
+
return self.fc(x)
|
| 160 |
+
|
| 161 |
+
class CustomClassificationHead(nn.Module):
|
| 162 |
+
def __init__(self, input_dim, num_classes):
|
| 163 |
+
|
| 164 |
+
super().__init__()
|
| 165 |
+
self.classifier = nn.Sequential(
|
| 166 |
+
nn.Linear(input_dim, 512),
|
| 167 |
+
nn.BatchNorm1d(512),
|
| 168 |
+
nn.ReLU(),
|
| 169 |
+
nn.Dropout(0.1),
|
| 170 |
+
nn.Linear(512, 256),
|
| 171 |
+
nn.BatchNorm1d(256),
|
| 172 |
+
nn.ReLU(),
|
| 173 |
+
nn.Dropout(0.1),
|
| 174 |
+
nn.Linear(256, 128),
|
| 175 |
+
nn.BatchNorm1d(128),
|
| 176 |
+
nn.ReLU(),
|
| 177 |
+
# nn.Dropout(0.1),
|
| 178 |
+
nn.Linear(128, num_classes)
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
def forward(self, x):
|
| 182 |
+
return self.classifier(x)
|
| 183 |
+
|
| 184 |
+
class CustomRegressionHead(nn.Module):
|
| 185 |
+
def __init__(self, input_dim, output_dim):
|
| 186 |
+
|
| 187 |
+
super().__init__()
|
| 188 |
+
self.regressor = nn.Sequential(
|
| 189 |
+
nn.Linear(input_dim, 512),
|
| 190 |
+
nn.BatchNorm1d(512),
|
| 191 |
+
nn.ReLU(),
|
| 192 |
+
nn.Dropout(0.1),
|
| 193 |
+
nn.Linear(512, 256),
|
| 194 |
+
nn.BatchNorm1d(256),
|
| 195 |
+
nn.ReLU(),
|
| 196 |
+
nn.Dropout(0.1),
|
| 197 |
+
nn.Linear(256, output_dim)
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
def forward(self, x):
|
| 201 |
+
return self.regressor(x)
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
def custom_heads(input_dim, num_classes=None, output_dim=None, task_type="classification"):
|
| 205 |
+
"""
|
| 206 |
+
Creates a custom head for classification or regression tasks.
|
| 207 |
+
Users should modify the class implementations for further customization.
|
| 208 |
+
|
| 209 |
+
Args:
|
| 210 |
+
input_dim (int): Input dimension of the head.
|
| 211 |
+
num_classes (int): Number of classes for classification tasks. Ignored for regression.
|
| 212 |
+
task_type (str): "classification" or "regression".
|
| 213 |
+
|
| 214 |
+
Returns:
|
| 215 |
+
nn.Module: Custom head for the specified task.
|
| 216 |
+
"""
|
| 217 |
+
if task_type == "classification":
|
| 218 |
+
if num_classes is None:
|
| 219 |
+
raise ValueError("num_classes must be specified for classification tasks.")
|
| 220 |
+
return CustomClassificationHead(input_dim=input_dim, num_classes=num_classes)
|
| 221 |
+
elif task_type == "regression":
|
| 222 |
+
return CustomRegressionHead(input_dim=input_dim, output_dim=output_dim)
|
| 223 |
+
else:
|
| 224 |
+
raise ValueError("Invalid task_type. Choose 'classification' or 'regression'.")
|
| 225 |
+
#%%
|
| 226 |
+
# Fine-tuning wrapper for the base model
|
| 227 |
+
class FineTuningWrapper(nn.Module):
|
| 228 |
+
def __init__(self, model, task_head, fine_tune_layers="full"):
|
| 229 |
+
super().__init__()
|
| 230 |
+
self.model = model
|
| 231 |
+
self.task_head = task_head
|
| 232 |
+
|
| 233 |
+
# Freeze all layers initially
|
| 234 |
+
for param in self.model.parameters():
|
| 235 |
+
param.requires_grad = False
|
| 236 |
+
|
| 237 |
+
# Handle fine-tuning layers
|
| 238 |
+
if fine_tune_layers is not None:
|
| 239 |
+
if fine_tune_layers == "full":
|
| 240 |
+
# Unfreeze all layers if "all" is specified
|
| 241 |
+
for param in self.model.parameters():
|
| 242 |
+
param.requires_grad = True
|
| 243 |
+
else:
|
| 244 |
+
# Get a list of all available layer names in the model
|
| 245 |
+
available_layers = [name for name, _ in self.model.named_parameters()]
|
| 246 |
+
|
| 247 |
+
# Validate that specified layers exist in the model
|
| 248 |
+
for layer in fine_tune_layers:
|
| 249 |
+
if not any(layer in lname for lname in available_layers):
|
| 250 |
+
raise ValueError(
|
| 251 |
+
f"Layer '{layer}' not found in the model. "
|
| 252 |
+
f"Available layers: {available_layers}"
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
# Unfreeze only the specified layers
|
| 256 |
+
for name, param in self.model.named_parameters():
|
| 257 |
+
if any(layer in name for layer in fine_tune_layers):
|
| 258 |
+
param.requires_grad = True
|
| 259 |
+
|
| 260 |
+
def forward(self, x, input_type="cls_emb"):
|
| 261 |
+
if input_type == "raw":
|
| 262 |
+
task_input = x.view(x.size(0), -1)
|
| 263 |
+
else:
|
| 264 |
+
embeddings, attn_maps = self.model(x) # Get embeddings from the base model
|
| 265 |
+
if input_type == "cls_emb":
|
| 266 |
+
task_input = embeddings[:, 0, :] # CLS token
|
| 267 |
+
elif input_type == "channel_emb":
|
| 268 |
+
chs_emb = embeddings[:, 1:, :]
|
| 269 |
+
task_input = chs_emb.view(chs_emb.size(0), -1) # embeddings.mean(dim=1) # Mean pooling over channel embeddings
|
| 270 |
+
|
| 271 |
+
return self.task_head(task_input), 0 if input_type=="raw" else attn_maps
|
| 272 |
+
#%%
|
| 273 |
+
# Fine-tuning function
|
| 274 |
+
from sklearn.metrics import f1_score
|
| 275 |
+
def finetune(
|
| 276 |
+
base_model,
|
| 277 |
+
train_loader,
|
| 278 |
+
val_loader=None,
|
| 279 |
+
task_type="classification",
|
| 280 |
+
input_type="cls_emb",
|
| 281 |
+
num_classes=None,
|
| 282 |
+
output_dim=None,
|
| 283 |
+
use_custom_head=False,
|
| 284 |
+
fine_tune_layers=None,
|
| 285 |
+
optimizer_config=None,
|
| 286 |
+
criterion=None,
|
| 287 |
+
epochs=10,
|
| 288 |
+
device="cuda",
|
| 289 |
+
task="Beam Prediction"
|
| 290 |
+
):
|
| 291 |
+
"""
|
| 292 |
+
Configures and fine-tunes the base model with user-defined settings, saving results and models.
|
| 293 |
+
"""
|
| 294 |
+
# Create results folder
|
| 295 |
+
time_now = f"{time.time():.0f}"
|
| 296 |
+
results_folder = f"results/{task}/{time_now}"
|
| 297 |
+
os.makedirs(results_folder, exist_ok=True)
|
| 298 |
+
log_file = os.path.join(results_folder, "training_log.csv")
|
| 299 |
+
|
| 300 |
+
# Initialize the CSV log
|
| 301 |
+
with open(log_file, mode='w', newline='') as file:
|
| 302 |
+
writer = csv.writer(file)
|
| 303 |
+
writer.writerow(["Task", "Input", "Epoch", "Train Loss", "Validation Loss", "F1-Score (Classification)", "Learning Rate", "Time"])
|
| 304 |
+
|
| 305 |
+
for batch in val_loader:
|
| 306 |
+
input_data, targets = batch[0].to(device), batch[1].to(device)
|
| 307 |
+
break
|
| 308 |
+
|
| 309 |
+
if input_type == "cls_emb":
|
| 310 |
+
n_patches = 1
|
| 311 |
+
patch_size = 128
|
| 312 |
+
elif input_type == "channel_emb":
|
| 313 |
+
n_patches = input_data.shape[1]-1
|
| 314 |
+
patch_size = 128
|
| 315 |
+
elif input_type == "raw":
|
| 316 |
+
n_patches = input_data.shape[1]
|
| 317 |
+
patch_size = 32
|
| 318 |
+
# patch_size = 1
|
| 319 |
+
|
| 320 |
+
if use_custom_head:
|
| 321 |
+
custom_head = custom_heads(input_dim=n_patches*patch_size,
|
| 322 |
+
num_classes=num_classes,
|
| 323 |
+
output_dim=output_dim,
|
| 324 |
+
task_type=task_type)
|
| 325 |
+
|
| 326 |
+
# Handle DataParallel models
|
| 327 |
+
if isinstance(base_model, nn.DataParallel):
|
| 328 |
+
base_model = base_model.module
|
| 329 |
+
|
| 330 |
+
# Set up the task-specific head
|
| 331 |
+
if use_custom_head:
|
| 332 |
+
task_head = custom_head
|
| 333 |
+
elif task_type == "classification":
|
| 334 |
+
if num_classes is None:
|
| 335 |
+
raise ValueError("num_classes must be specified for classification tasks.")
|
| 336 |
+
task_head = ClassificationHead(input_dim=n_patches*patch_size, num_classes=num_classes) # input_dim=base_model.embedding.d_model
|
| 337 |
+
elif task_type == "regression":
|
| 338 |
+
task_head = RegressionHead(input_dim=n_patches*patch_size) # input_dim=base_model.embedding.d_model
|
| 339 |
+
else:
|
| 340 |
+
raise ValueError("Invalid task_type. Choose 'classification' or 'regression'.")
|
| 341 |
+
|
| 342 |
+
# Wrap the model with the fine-tuning head
|
| 343 |
+
wrapper = FineTuningWrapper(base_model, task_head, fine_tune_layers=fine_tune_layers)
|
| 344 |
+
wrapper = wrapper.to(device)
|
| 345 |
+
|
| 346 |
+
print(f'Number of head parameters: {count_parameters(wrapper)}')
|
| 347 |
+
|
| 348 |
+
# Set default optimizer config if not provided
|
| 349 |
+
if optimizer_config is None:
|
| 350 |
+
optimizer_config = {"lr": 1e-4}
|
| 351 |
+
# Set up the optimizer
|
| 352 |
+
optimizer = torch.optim.Adam(wrapper.parameters(), **optimizer_config)
|
| 353 |
+
# Set up the scheduler for learning rate decay
|
| 354 |
+
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.2) # Example: Reduce LR by 10x every 10 epochs
|
| 355 |
+
|
| 356 |
+
# Set up the loss criterion
|
| 357 |
+
if criterion is None:
|
| 358 |
+
criterion = nn.CrossEntropyLoss() if task_type == "classification" else nn.MSELoss()
|
| 359 |
+
|
| 360 |
+
scaler = GradScaler()
|
| 361 |
+
train_losses, val_losses, f1_scores = [], [], []
|
| 362 |
+
best_val_loss = float("inf")
|
| 363 |
+
best_model_path = None
|
| 364 |
+
|
| 365 |
+
for epoch in range(epochs):
|
| 366 |
+
# Training loop
|
| 367 |
+
wrapper.train()
|
| 368 |
+
epoch_loss = 0.0
|
| 369 |
+
|
| 370 |
+
with tqdm(train_loader, desc=f"Epoch {epoch + 1}/{epochs}") as progress_bar:
|
| 371 |
+
for batch in progress_bar:
|
| 372 |
+
input_data, targets = batch[0].to(device), batch[1].to(device)
|
| 373 |
+
optimizer.zero_grad()
|
| 374 |
+
|
| 375 |
+
with autocast():
|
| 376 |
+
outputs, attn_maps = wrapper(input_data, input_type=input_type)
|
| 377 |
+
loss = criterion(outputs, targets)
|
| 378 |
+
|
| 379 |
+
scaler.scale(loss).backward()
|
| 380 |
+
scaler.step(optimizer)
|
| 381 |
+
scaler.update()
|
| 382 |
+
|
| 383 |
+
epoch_loss += loss.item()
|
| 384 |
+
progress_bar.set_postfix({"Loss": loss.item()})
|
| 385 |
+
|
| 386 |
+
avg_train_loss = epoch_loss / len(train_loader)
|
| 387 |
+
train_losses.append(avg_train_loss)
|
| 388 |
+
|
| 389 |
+
# Validation loop
|
| 390 |
+
if val_loader:
|
| 391 |
+
wrapper.eval()
|
| 392 |
+
val_loss = 0.0
|
| 393 |
+
all_preds, all_targets = [], []
|
| 394 |
+
|
| 395 |
+
with torch.no_grad():
|
| 396 |
+
for batch in val_loader:
|
| 397 |
+
input_data, targets = batch[0].to(device), batch[1].to(device)
|
| 398 |
+
with autocast():
|
| 399 |
+
outputs, _ = wrapper(input_data, input_type=input_type)
|
| 400 |
+
loss = criterion(outputs, targets)
|
| 401 |
+
|
| 402 |
+
val_loss += loss.item()
|
| 403 |
+
|
| 404 |
+
if task_type == "classification":
|
| 405 |
+
preds = torch.argmax(outputs, dim=1).cpu().numpy()
|
| 406 |
+
all_preds.extend(preds)
|
| 407 |
+
all_targets.extend(targets.cpu().numpy())
|
| 408 |
+
|
| 409 |
+
avg_val_loss = val_loss / len(val_loader)
|
| 410 |
+
val_losses.append(avg_val_loss)
|
| 411 |
+
|
| 412 |
+
time_now = f"{time.time():.0f}"
|
| 413 |
+
# Save the best model
|
| 414 |
+
if avg_val_loss < best_val_loss:
|
| 415 |
+
best_val_loss = avg_val_loss
|
| 416 |
+
best_model_path = os.path.join(results_folder, f"{input_type}_epoch{epoch+1}_valLoss{avg_val_loss:.4f}_{time_now}.pth")
|
| 417 |
+
torch.save(wrapper.state_dict(), best_model_path)
|
| 418 |
+
print(f"Model saved at {best_model_path} with validation loss: {best_val_loss:.4f}")
|
| 419 |
+
|
| 420 |
+
# Compute F1-score for classification tasks
|
| 421 |
+
f1 = None
|
| 422 |
+
if task_type == "classification":
|
| 423 |
+
f1 = f1_score(all_targets, all_preds, average="macro")
|
| 424 |
+
print(f"Epoch {epoch + 1}, Validation F1-Score: {f1:.4f}")
|
| 425 |
+
f1_scores.append(f1)
|
| 426 |
+
|
| 427 |
+
scheduler.step()
|
| 428 |
+
|
| 429 |
+
# Log results
|
| 430 |
+
with open(log_file, mode='a', newline='') as file:
|
| 431 |
+
writer = csv.writer(file)
|
| 432 |
+
writer.writerow([task, input_type, epoch + 1, avg_train_loss, avg_val_loss, f1 if f1 is not None else "-", scheduler.get_last_lr()[0], f"{time_now}"])
|
| 433 |
+
|
| 434 |
+
# Plot training and validation losses
|
| 435 |
+
plt.figure(figsize=(10, 6))
|
| 436 |
+
plt.plot(range(1, epochs + 1), train_losses, label="Training Loss")
|
| 437 |
+
plt.plot(range(1, epochs + 1), val_losses, label="Validation Loss", linestyle="--")
|
| 438 |
+
plt.xlabel("Epochs")
|
| 439 |
+
plt.ylabel("Loss")
|
| 440 |
+
plt.title("Training and Validation Loss")
|
| 441 |
+
plt.legend()
|
| 442 |
+
plt.grid(True)
|
| 443 |
+
# plt.savefig(os.path.join(results_folder, "loss_curve.png"))
|
| 444 |
+
plt.show()
|
| 445 |
+
|
| 446 |
return wrapper, best_model_path, train_losses, val_losses, f1_scores if task_type == "classification" else 0, attn_maps
|