whitneyten's picture
End of training
616f739 verified
metadata
library_name: transformers
language:
  - jpn
license: mit
base_model: pyannote/speaker-diarization-3.1
tags:
  - speaker-diarization
  - speaker-segmentation
  - generated_from_trainer
datasets:
  - diarizers-community/callhome
model-index:
  - name: speaker-segmentation-fine-tuned-callhome-jpn
    results: []

speaker-segmentation-fine-tuned-callhome-jpn

This model is a fine-tuned version of pyannote/speaker-diarization-3.1 on the diarizers-community/callhome dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7600
  • Model Preparation Time: 0.0042
  • Der: 0.2253
  • False Alarm: 0.0463
  • Missed Detection: 0.1355
  • Confusion: 0.0434

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Der False Alarm Missed Detection Confusion
0.5792 1.0 328 0.7544 0.0042 0.2330 0.0530 0.1318 0.0482
0.5219 2.0 656 0.7515 0.0042 0.2265 0.0483 0.1352 0.0430
0.5221 3.0 984 0.7581 0.0042 0.2261 0.0489 0.1340 0.0432
0.5033 4.0 1312 0.7550 0.0042 0.2248 0.0489 0.1329 0.0429
0.5249 5.0 1640 0.7600 0.0042 0.2253 0.0463 0.1355 0.0434

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0