|
--- |
|
license: apache-2.0 |
|
base_model: google/flan-t5-large |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
- f1 |
|
- recall |
|
- precision |
|
model-index: |
|
- name: KGQA-1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# KGQA-1 |
|
|
|
This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.0784 |
|
- Rouge1: 72.8963 |
|
- Rouge2: 60.8929 |
|
- Rougel: 69.6657 |
|
- Rougelsum: 72.9329 |
|
- Gen Len: 4.8819 |
|
- F1: 0.7593 |
|
- Recall: 0.7681 |
|
- Precision: 0.7508 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine_with_restarts |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | F1 | Recall | Precision | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|:------:|:------:|:---------:| |
|
| 2.8587 | 1.0 | 598 | 2.2931 | 49.5203 | 26.8249 | 43.3252 | 49.5005 | 4.6943 | 0.5633 | 0.5546 | 0.5723 | |
|
| 1.7685 | 2.0 | 1196 | 1.6857 | 52.6345 | 31.7615 | 46.5617 | 52.5831 | 4.7965 | 0.619 | 0.6295 | 0.6088 | |
|
| 0.8979 | 3.0 | 1794 | 1.3095 | 65.3839 | 49.1969 | 60.9907 | 65.2835 | 4.8928 | 0.6898 | 0.6806 | 0.6992 | |
|
| 0.4881 | 4.0 | 2392 | 1.4524 | 68.0576 | 53.7819 | 64.3964 | 67.9986 | 4.835 | 0.7239 | 0.7106 | 0.7378 | |
|
| 1.2094 | 5.0 | 2990 | 3.2070 | 18.934 | 4.1916 | 14.7003 | 18.9198 | 6.0159 | 0.0005 | 0.001 | 0.0003 | |
|
| 0.7018 | 6.0 | 3588 | 1.3772 | 68.1255 | 54.2242 | 64.3339 | 68.1513 | 4.7588 | 0.7125 | 0.69 | 0.7366 | |
|
| 0.3275 | 7.0 | 4186 | 1.5585 | 72.2516 | 60.2665 | 68.9117 | 72.2482 | 4.9246 | 0.7643 | 0.7827 | 0.7468 | |
|
| 0.112 | 8.0 | 4784 | 2.0784 | 72.8963 | 60.8929 | 69.6657 | 72.9329 | 4.8819 | 0.7593 | 0.7681 | 0.7508 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.43.3 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|