weizhou03's picture
Push model using huggingface_hub.
359f204 verified
|
raw
history blame
12.7 kB
metadata
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
widget:
  - text: I need some icon suggestions for this layout
  - text: Tighten the letter spacing
  - text: Group the logo and title together
  - text: Create a photo of a mountain landscape
  - text: Mirror the logo vertically
metrics:
  - accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: nomic-ai/nomic-embed-text-v1.5
model-index:
  - name: SetFit with nomic-ai/nomic-embed-text-v1.5
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: accuracy
            value: 0.29854096520763185
            name: Accuracy

SetFit with nomic-ai/nomic-embed-text-v1.5

This is a SetFit model that can be used for Text Classification. This SetFit model uses nomic-ai/nomic-embed-text-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
0
  • 'Add a corporate presentation background'
1
  • 'I need some icon suggestions for this layout'
2
  • "Add a heading that says 'Welcome'"
3
  • 'Distribute the shapes across the page'
4
  • 'Add a zoom animation to the logo'
5
  • 'Make everything fade in gradually'
6
  • 'Remove the unwanted text overlay'
7
  • 'Remove the background shape'
8
  • 'What shape options do you have?'
9
  • 'Distribute the buttons around the center image'
10
  • 'Duplicate the page structure'
11
  • 'Duplicate the icon and move it'
12
  • 'Copy the content to the final page'
13
  • 'Fix the letter spacing'
14
  • 'Mirror the logo vertically'
15
  • 'Create a photo of a mountain landscape'
16
  • 'Create a card for a birthday party'
17
  • 'Group the logo and title together'
18
  • 'Move the image to the center'
19
  • 'Apply a vintage filter to the photo'
20
  • 'Find me texture patterns'
21
  • 'Restore the previous color'
22
  • 'Remove the background from the illustration'
23
  • 'Delete the old sign'
24
  • 'Replace the old logo with a new one'
25
  • 'Replace the tagline'
26
  • 'Reset the image adjustments'
27
  • 'Scale the text up'
28
  • 'Resize to LinkedIn post dimensions'
29
  • 'Turn the logo 270 degrees'
30
  • 'Scatter the particles around the text'
31
  • 'Select the footer content'
32
  • 'Change to a light gray background'
33
  • 'Change the blend mode to color burn'
34
  • 'Blur the logo slightly'
35
  • 'Add a double border to the image'
36
  • 'Make the photo more illuminated'
37
  • 'Send the logo to the back'
38
  • 'Increase the image contrast'
39
  • 'Crop to a polygon'
40
  • 'Add a gradient shadow'
41
  • 'Change the background color to green'
42
  • 'Increase the menu font size'
43
  • 'Make the text bold and strikethrough'
44
  • 'Use a decorative font for the logo'
45
  • 'Brighten the light areas'
46
  • 'Set the picture as full background'
47
  • 'Tighten the letter spacing'
48
  • 'Add more line height'
49
  • 'Reduce the opacity of the overlay'
50
  • 'Reduce the paragraph spacing'
51
  • 'Make the colors more vibrant'
52
  • 'Make the shadows deeper'
53
  • 'Increase the image sharpness'
54
  • 'Left align the subtitle'
55
  • 'Create a text container'
56
  • 'Create text in a spiral pattern'
57
  • 'Convert to bullet point format'
58
  • 'Add a colored shadow to the text'
59
  • 'Increase the warm color cast'
60
  • 'I want to upload a new image'
61
  • 'Revert the opacity change'
62
  • 'Break apart the grouped elements'

Evaluation

Metrics

Label Accuracy
all 0.2985

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Tighten the letter spacing")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 3 5.2857 8
Label Training Sample Count
0 1
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1
10 1
11 1
12 1
13 1
14 1
15 1
16 1
17 1
18 1
19 1
20 1
21 1
22 1
23 1
24 1
25 1
26 1
27 1
28 1
29 1
30 1
31 1
32 1
33 1
34 1
35 1
36 1
37 1
38 1
39 1
40 1
41 1
42 1
43 1
44 1
45 1
46 1
47 1
48 1
49 1
50 1
51 1
52 1
53 1
54 1
55 1
56 1
57 1
58 1
59 1
60 1
61 1
62 1

Training Hyperparameters

  • batch_size: (64, 64)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0161 1 0.1282 -
0.8065 50 0.0118 -

Framework Versions

  • Python: 3.12.11
  • SetFit: 1.1.3
  • Sentence Transformers: 5.1.0
  • Transformers: 4.54.1
  • PyTorch: 2.7.1
  • Datasets: 4.0.0
  • Tokenizers: 0.21.4

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}