metadata
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: I need some icon suggestions for this layout
- text: Tighten the letter spacing
- text: Group the logo and title together
- text: Create a photo of a mountain landscape
- text: Mirror the logo vertically
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: nomic-ai/nomic-embed-text-v1.5
model-index:
- name: SetFit with nomic-ai/nomic-embed-text-v1.5
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.29854096520763185
name: Accuracy
SetFit with nomic-ai/nomic-embed-text-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses nomic-ai/nomic-embed-text-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: nomic-ai/nomic-embed-text-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 8192 tokens
- Number of Classes: 63 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
0 |
|
1 |
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
|
27 |
|
28 |
|
29 |
|
30 |
|
31 |
|
32 |
|
33 |
|
34 |
|
35 |
|
36 |
|
37 |
|
38 |
|
39 |
|
40 |
|
41 |
|
42 |
|
43 |
|
44 |
|
45 |
|
46 |
|
47 |
|
48 |
|
49 |
|
50 |
|
51 |
|
52 |
|
53 |
|
54 |
|
55 |
|
56 |
|
57 |
|
58 |
|
59 |
|
60 |
|
61 |
|
62 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.2985 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Tighten the letter spacing")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 5.2857 | 8 |
Label | Training Sample Count |
---|---|
0 | 1 |
1 | 1 |
2 | 1 |
3 | 1 |
4 | 1 |
5 | 1 |
6 | 1 |
7 | 1 |
8 | 1 |
9 | 1 |
10 | 1 |
11 | 1 |
12 | 1 |
13 | 1 |
14 | 1 |
15 | 1 |
16 | 1 |
17 | 1 |
18 | 1 |
19 | 1 |
20 | 1 |
21 | 1 |
22 | 1 |
23 | 1 |
24 | 1 |
25 | 1 |
26 | 1 |
27 | 1 |
28 | 1 |
29 | 1 |
30 | 1 |
31 | 1 |
32 | 1 |
33 | 1 |
34 | 1 |
35 | 1 |
36 | 1 |
37 | 1 |
38 | 1 |
39 | 1 |
40 | 1 |
41 | 1 |
42 | 1 |
43 | 1 |
44 | 1 |
45 | 1 |
46 | 1 |
47 | 1 |
48 | 1 |
49 | 1 |
50 | 1 |
51 | 1 |
52 | 1 |
53 | 1 |
54 | 1 |
55 | 1 |
56 | 1 |
57 | 1 |
58 | 1 |
59 | 1 |
60 | 1 |
61 | 1 |
62 | 1 |
Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0161 | 1 | 0.1282 | - |
0.8065 | 50 | 0.0118 | - |
Framework Versions
- Python: 3.12.11
- SetFit: 1.1.3
- Sentence Transformers: 5.1.0
- Transformers: 4.54.1
- PyTorch: 2.7.1
- Datasets: 4.0.0
- Tokenizers: 0.21.4
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}