bert-suicide-detection-hk-new
This model is a fine-tuned version of hon9kon9ize/bert-base-cantonese on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3852
- Accuracy: 0.9241
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.5003 | 0.0573 | 20 | 0.3516 | 0.8228 |
0.3891 | 0.1146 | 40 | 0.3730 | 0.8228 |
0.4264 | 0.1719 | 60 | 0.3530 | 0.8165 |
0.421 | 0.2292 | 80 | 0.2427 | 0.8987 |
0.37 | 0.2865 | 100 | 0.4437 | 0.8418 |
0.447 | 0.3438 | 120 | 0.3434 | 0.8481 |
0.2692 | 0.4011 | 140 | 0.3545 | 0.8861 |
0.2534 | 0.4585 | 160 | 0.3643 | 0.9051 |
0.3963 | 0.5158 | 180 | 0.4267 | 0.8734 |
0.2337 | 0.5731 | 200 | 0.5053 | 0.8671 |
0.4065 | 0.6304 | 220 | 0.3786 | 0.9051 |
0.4239 | 0.6877 | 240 | 0.2757 | 0.9051 |
0.2728 | 0.7450 | 260 | 0.3095 | 0.9051 |
0.3323 | 0.8023 | 280 | 0.3326 | 0.9177 |
0.2479 | 0.8596 | 300 | 0.3019 | 0.9114 |
0.4682 | 0.9169 | 320 | 0.3146 | 0.9051 |
0.5659 | 0.9742 | 340 | 0.2427 | 0.9304 |
0.1859 | 1.0315 | 360 | 0.2563 | 0.9241 |
0.0832 | 1.0888 | 380 | 0.2922 | 0.9177 |
0.1351 | 1.1461 | 400 | 0.3399 | 0.9051 |
0.1608 | 1.2034 | 420 | 0.4556 | 0.9114 |
0.3276 | 1.2607 | 440 | 0.3819 | 0.9114 |
0.2105 | 1.3181 | 460 | 0.3725 | 0.9051 |
0.1077 | 1.3754 | 480 | 0.3591 | 0.9241 |
0.0568 | 1.4327 | 500 | 0.3666 | 0.9177 |
0.1179 | 1.4900 | 520 | 0.4484 | 0.8987 |
0.1392 | 1.5473 | 540 | 0.3758 | 0.9241 |
0.1825 | 1.6046 | 560 | 0.3526 | 0.9241 |
0.28 | 1.6619 | 580 | 0.3396 | 0.9241 |
0.104 | 1.7192 | 600 | 0.3169 | 0.9177 |
0.0656 | 1.7765 | 620 | 0.3365 | 0.9241 |
0.2895 | 1.8338 | 640 | 0.3365 | 0.9241 |
0.3512 | 1.8911 | 660 | 0.3318 | 0.9177 |
0.0908 | 1.9484 | 680 | 0.3043 | 0.9051 |
0.2113 | 2.0057 | 700 | 0.2724 | 0.9114 |
0.1008 | 2.0630 | 720 | 0.3296 | 0.9177 |
0.0428 | 2.1203 | 740 | 0.3665 | 0.9177 |
0.0109 | 2.1777 | 760 | 0.4608 | 0.9114 |
0.0302 | 2.2350 | 780 | 0.4164 | 0.9241 |
0.1545 | 2.2923 | 800 | 0.4920 | 0.9051 |
0.1136 | 2.3496 | 820 | 0.4086 | 0.9177 |
0.0567 | 2.4069 | 840 | 0.3794 | 0.9114 |
0.0006 | 2.4642 | 860 | 0.3758 | 0.9304 |
0.0004 | 2.5215 | 880 | 0.3846 | 0.9304 |
0.0597 | 2.5788 | 900 | 0.3943 | 0.9304 |
0.0532 | 2.6361 | 920 | 0.4111 | 0.9304 |
0.1793 | 2.6934 | 940 | 0.4152 | 0.9241 |
0.293 | 2.7507 | 960 | 0.4020 | 0.9304 |
0.0774 | 2.8080 | 980 | 0.3849 | 0.9241 |
0.1255 | 2.8653 | 1000 | 0.3787 | 0.9177 |
0.0006 | 2.9226 | 1020 | 0.3836 | 0.9241 |
0.0062 | 2.9799 | 1040 | 0.4092 | 0.9114 |
0.0018 | 3.0372 | 1060 | 0.4327 | 0.9241 |
0.0006 | 3.0946 | 1080 | 0.4502 | 0.9177 |
0.1874 | 3.1519 | 1100 | 0.4322 | 0.9177 |
0.0676 | 3.2092 | 1120 | 0.4126 | 0.9114 |
0.0199 | 3.2665 | 1140 | 0.4113 | 0.9051 |
0.0674 | 3.3238 | 1160 | 0.4134 | 0.9177 |
0.0004 | 3.3811 | 1180 | 0.4212 | 0.9177 |
0.0004 | 3.4384 | 1200 | 0.4277 | 0.9177 |
0.1097 | 3.4957 | 1220 | 0.4246 | 0.9177 |
0.0004 | 3.5530 | 1240 | 0.4207 | 0.9177 |
0.0152 | 3.6103 | 1260 | 0.4250 | 0.9177 |
0.0146 | 3.6676 | 1280 | 0.4120 | 0.9241 |
0.0377 | 3.7249 | 1300 | 0.4052 | 0.9304 |
0.1061 | 3.7822 | 1320 | 0.4011 | 0.9177 |
0.1026 | 3.8395 | 1340 | 0.4384 | 0.9177 |
0.1264 | 3.8968 | 1360 | 0.4102 | 0.9177 |
0.0079 | 3.9542 | 1380 | 0.4019 | 0.9241 |
0.0249 | 4.0115 | 1400 | 0.3998 | 0.9177 |
0.0115 | 4.0688 | 1420 | 0.3949 | 0.9241 |
0.0004 | 4.1261 | 1440 | 0.3971 | 0.9241 |
0.0847 | 4.1834 | 1460 | 0.3859 | 0.9304 |
0.0004 | 4.2407 | 1480 | 0.3855 | 0.9304 |
0.002 | 4.2980 | 1500 | 0.3879 | 0.9367 |
0.0004 | 4.3553 | 1520 | 0.3917 | 0.9367 |
0.076 | 4.4126 | 1540 | 0.3851 | 0.9367 |
0.0004 | 4.4699 | 1560 | 0.3871 | 0.9304 |
0.0925 | 4.5272 | 1580 | 0.3846 | 0.9367 |
0.0009 | 4.5845 | 1600 | 0.3872 | 0.9304 |
0.0045 | 4.6418 | 1620 | 0.3885 | 0.9304 |
0.1944 | 4.6991 | 1640 | 0.3827 | 0.9304 |
0.0004 | 4.7564 | 1660 | 0.3820 | 0.9304 |
0.0616 | 4.8138 | 1680 | 0.3843 | 0.9241 |
0.0003 | 4.8711 | 1700 | 0.3851 | 0.9241 |
0.083 | 4.9284 | 1720 | 0.3852 | 0.9241 |
0.0005 | 4.9857 | 1740 | 0.3852 | 0.9241 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 40
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for wcyat/bert-suicide-detection-hk-new
Base model
google-bert/bert-base-chinese
Finetuned
indiejoseph/bert-base-cantonese
Finetuned
hon9kon9ize/bert-base-cantonese